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Nontrivial polydispersity exponents in aggregation models
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~Received 11 July 1996; revised manuscript received 12 December 1996!

We consider the scaling solutions of Smoluchowski’s equation of irreversible aggregation, for a nongelling
collision kernel. The scaling mass distributionf (s) diverges ass2t whens→0. t is nontrivial and could, until
now, only be computed by numerical simulations. We develop heregeneral methodsto obtain exact bounds
and good approximations oft. For the specific kernelKD

d (x,y)5(x1/D1y1/D)d, describing a mean-field model
of particles moving ind dimensions and aggregating with conservation of ‘‘mass’’s5RD (R is the particle
radius!, perturbative and nonperturbative expansions are derived. For a general kernel, we find exact inequali-
ties fort and develop avariational approximationwhich is used to carry out a systematic study oft(d,D) for
KD
d . The agreement is excellent both with the expansions we derived and with existing numerical values.

Finally, we discuss a possible application to 2d decaying turbulence.@S1063-651X~97!02304-0#

PACS number~s!: 05.20.Dd, 05.70.Ln, 64.60.Qb, 82.70.2y
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I. INTRODUCTION

Aggregation phenomena are widespread in nature. T
have such an impact on materials sciences, chemistry,
astrophysics that a large amount of literature has been
voted to them@1–4#. In such dynamical processes, particl
or objects as different in geometry and size as colloidal p
ticles, galaxies, small molecules, vortices in fluids, drople
and polymers can merge to form a new entity when th
come into close contact or interpenetrate, through diffus
~Brownian coagulation@5,6#!, ballistic motion~ballistic ag-
glomeration@7–9#!, exogenous growth~droplet growth and
coalescence@10#!, or droplet deposition@11#.

One is usually interested in the evolution of the statisti
distribution of the ‘‘mass’’ s, a quantity characteristic o
each particle, that is conserved in the coalescence proce
can be either the actual mass, the volume, the area, the
tric charge, or any other physical quantity, depending on
underlying physics.

Great progress was achieved when it was proposed@12#
and observed both in real experiments and in numer
simulations that the mass distributionN(s,t) exhibits scale
invariance at large time:

N~s,t !;S~ t !2b f S s

S~ t ! D , S~ t !;tz. ~1.1!

The divergence of the mass scaleS(t) bears on the oblivion
of initial conditions and physical cutoff or discreteness,
does the diverging correlation length of critical phenome
universality arises in dynamics as well, with new universa
classes.

The exponentsz andb are often easily derived from con
servation laws and physical arguments, but in many cas
polydispersity exponentt defined by f (x);x2t when
x→0 is observed, whose value is nontrivial though univ
sal. The prediction oft is still a challenge.

Except for a few@usually one-dimensional~1D!# exactly
solvable models@13,14#, analytical results are still lacking
551063-651X/97/55~5!/5465~14!/$10.00
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The most popular approach to these aggregation problem
Smoluchowski’s equation@5#, a master equation@15# for the
one-body distributionN(s,t):

]N~s,t !

]t
5
1

2E0
s

N~s1 ,t !N~s2s1 ,t !K~s1 ,s2s1!ds1

2N~s,t !E
0

1`

N~s1 ,t !K~s,s1!ds1 , ~1.2!

where the aggregation kernelK(x,y) is symmetric and is
characteristic of the physics of the aggregation process o
more or less coarse-grained level. Such kinetic equations
usually derived within a mean-field approximation, whe
density fluctuations are ignored. Mean-field approximation
expected to be valid above an upper critical spatial dim
sion. This dimension is usually 2 for reaction-diffusion mo
els, but van Dongen showed that it can depend on the ke
@16#. Including some proper approximation of the densi
density correlations in the kernel may improve Smoluchow
ki’s approach@17#.

Mean field as it may be, Smoluchowski’s equation is s
highly nontrivial. No exact solution is available, except in
very few specific cases~see below!, and extracting the non
trivial exponentt for a specific system from the proper k
netic equation is not an easy task. The problem was clari
by van Dongen and Ernst@18#, who classified the kernels
according to their homogeneity and asymptotic behavior:

K~bx,by!5blK~x,y!, ~1.3!

K~x,y!;xmyn~y@x!. ~1.4!

For a given physical system, the homogeneityl is easily
determined using scaling arguments. We consider only n
gelling systems withl<1 @18#. Form.0, the exponentt is
trivial and found to bet511l, whereas form50, t de-
pends on the whole solutionf of the scaling equation derive
from Eq. ~1.2! @see Eq.~2.5! below#. m,0 does not lead to
any power law behavior but rather to a bell-shaped sca
function f @18#.
5465 © 1997 The American Physical Society
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5466 55STÉPHANE CUEILLE AND CLÉMENT SIRE
In the following, we shall focus on them50 case for
which the exponentt has so far only been determined n
merically by direct simulation of Smoluchowski’s equatio
@19,20#, not an easy task@2,19#, by time series@21#, and of
course by direct simulation of the physical system suppo
to be described by the considered Smoluchowski equa
@2,6,7,9–12,19#. In the latter case, direct comparison wi
mean-field results is in principle rather delicate. These me
ods are quite heavy, which explains that very few values
t are known@20,21#, most of them concerning a specifi
kernel,KD

d (x,y)5(x1/D1y1/D)d (0<d<D), which appears
in various physical applications@2–4,17,22–24#.

Considering the ubiquity and the importance of t
m50 case leading to nontrivial polydispersity exponen
analytical results as well as more effective numerical me
ods, making it possible to carry out extensive studies,
certainly needed to use Smoluchowski’s approach in a
dictive way. The purpose of this article is to provide bo
and use them to perform a complete study oft(d,D) for the
kernelKD

d 5(x1/D1y1/D)d. These analytical methods consi
of exact bounds, perturbative and nonperturbative exp
sions around exactly solvable limits, while we introduce
variational scheme, leading to excellent approximations
t at extremely low computational cost, without directly sol
ing Smoluchowski’s equation. We end the paper with a pr
tical application of our results in the field of two-dimension
turbulence.

In Sec. II we present a mean-field model of aggregation
D-dimensional spheres diffusing in ad-dimensional space
and coalescing with conservation of their volume, for whi
we derive a Smoluchowski equation with the kern
KD
d 5(x1/D1y1/D)d. Under the scaling hypothesis, we wri

down the equation for the scaling function, determine
exponentsz andb, and derive an integral equation fort as
well as a series of integral equations for the moments of
scaling functionf . This section is intended merely to clarif
notations, to present the state of the art, and to make a
useful remarks.

Sections III and IV present analytical results for the p
viously introduced kernelKD

d . Section III describes a metho
to obtain exact bounds for any kernel, based on integ
equalities established in Sec. II.

Section IV deals with expansions oft around its value for
exactly solvable kernels. Starting from the remark thatKD

d

reduces to the constant kernel in bothd→0 andD→` lim-
its, for which an explicit exponential solution is known, w
find some perturbative expansions in both limits. In the la
D limit with d/D5l fixed, the kernel reduces to 2d(xy)l

and we show thatt→11l, the first correction being expo
nentially small at larged, and thus nonperturbative.

In Sec. V we present a variational approximation based
integral equations for the moments off , and valid forany
homogeneous kernel. This method reproduces some know
exact results, and is used to computet for a wide range of
d andD, the results being summarized in Fig. 2. The a
proximation is compared to the few existing numerical
sults@20,21# as well as with analytical expansions derived
Sec. IV, with excellent agreement and very low compu
tional cost.
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Section VI presents a possible application in the field
two-dimensional turbulence. We consider a model of diffu
ing and merging coherent vortices, and Smoluchowsk
equation leads to non-Batchelor energy spectra with ex
nents in qualitative agreement with direct simulations fou
in the literature@25,26#.

II. MODEL AND SCALING

Consider hyperspherical particles in ad-dimensional box,
of polydisperse radiiR with distribution F(R,t), evolving
the following way: at timet we choose the positions of the
centers with uniform probability ind space. Then each pa
of overlapping spheres of radiiR1 andR2 merges to form a
new sphere of radius,

R5~R1
D1R2

D!1/D, ~2.1!

whereD is a parameter withD>d. D can be the actua
dimension of the spheres, as for instance in the case
D53 spheres deposited on ad52 plane @11#. Once each
coalescence has been resolved, we have reached
t1dt.

A. Derivation of Smoluchowski’s equation

The conserved variable iss5RD, and is continuous. We
shall calls0 the physical lower cutoff, that is, the charge
the smallest sphere in the initial condition. Since the rad
of a surviving sphere can only increase through coalesce
N(s,t)50 for s,s0 and for any timet.0. Smoluchowski’s
equation consists just in a balance of collisions. The num
of collisions between two spheres of radiuss1

1/D and s2
1/D

randomly and independently deposited in thed-dimensional
medium isN(s1 ,t)N(s2 ,t)Vd(s1

1/D1s2
1/D)d whereVd is the

d-dimensional total solid angle. We obtain the equation

N~s,t1dt !2N~s,t !

5VdH 12E0sN~s1 ,t !N~s2s1 ,t !KD
d ~s1 ,s2s1!ds1

2N~s,t !E
0

1`

N~s1 ,t !KD
d ~s,s1!ds1J , ~2.2!

with KD
d (x,y)5(x1/D1y1/D)d. We can get rid of the multi-

plicative constant, by properly choosing the time unitdt and
by replacing the finite difference in time by a partial deriv
tive to exactly obtain Eq.~1.2!. We notice that the only ap
proximation used to derive the equation is to neglect multi
collisions, for the system is intrinsically mean-field.

The kernelKD
d (x,y)5(x1/D1y1/D)d has been introduced

in many contexts from molecular coagulation@17# to cos-
mology @20,22# for specific values ofd andD, and is one of
the most studied in the literature@17,18,20–22,27–29# al-
though very few analytical results are known. This kern
hasl5d/D andm50. Exact solutions are available in th
cased50 orD5` ~constant kernel! @5#, andd5D51 @27#.



,

f

e
m
s

to

ize

e

de
to

e

b

th

-
l

r-

e

ll

h

ith

nd
r,
l-

rnst
y it
lt

the
t

n-
l

ly
ri-
lf.

ed
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B. Scaling

Now, we introduce the scaling form ofN(s,t). We first
write the conservation law. The total mass in the system
*s0

1`sN(s,t)ds;S(t)22b*0
1`x f(x)dx and is conserved

which impliesb52, implicitly assuming that the integral o
x f(x) converges, i.e., in terms of the smallx divergence of
f , that t,2, which will be shown below. We consider th
total number of particles in the syste
n(t)5*0

1`N(s,t)ds. It behaves at large time a
S(t)12b*s0 /S(t)

1` f (x)dx. If t,1, n(t);S(t)12b*0
1` f (x)dx

whereas ift.1, n(t)}S(t)b2t. If t51, the integral di-
verges as ln@S(t)#, hencen(t)}S(t)12bln@S(t)#.

As promised, we are now able to show thatt,2. If
t.2, the total charge in the system is proportional
S(t)t2b, enforcing b5t. As a consequence,n(t) would
have a nonzero limit, which is impossible. To summar
these results, we have, withn(t)}t2z8,

b52, ~2.3!

z85H z if t,1

z~22t! if t.1.
~2.4!

The derivation of the scaling equation is rigorously d
scribed in@30#, where it is shown thatS(t);wtz, w being
some positive constant characteristic of the time depen
equation. Plugging the scaling form of the distribution in
Smoluchowski’s equation, and matching the larget behavior
of both sides of the equation, yieldsz5D/(d2D) and the
equation for the scaling function,

w@s f8~s!12 f ~s!#

5 f ~s!E
0

1`

f ~s1!KD
d ~s1,s!ds1

2
1

2E0
s

f ~s1! f ~s2s1!KD
d ~s1,s2s1!ds1 . ~2.5!

If t>1 each term of the right hand side of Eq.~2.5! is
separately divergent and they should be properly group
for instance,

w@s f8~s!12 f ~s!#

5 f ~s!E
s/2

1`

f ~s1!KD
d ~s1,s!ds1

2E
0

s/2

f ~s1!$ f ~s2s1!KD
d ~s1,s2s1!

2 f ~s!KD
d ~s1,s!ds1 . ~2.6!

Another way of taking care of these divergences is to
found in @18,30#.

As we are only interested in the exponent affecting
small s behavior of f , we shall setw to unity by changing
f to w1/2f . If f (s) is a solution of Eq. ~2.5!, then
b11d/Df (bs) is also a solution. The value ofb is often fixed
by imposing *x f(x)dx51, but we will make a different
choice for reasons that will become clear later.
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A careful study of the larges behavior off shows that if
l,1 (d,D), f (s);c`ds2le2ds, with c`

215*0
1/2KD

d

(x,12x)x2l(12x)2ldx @30#. We choose the solution cor
responding tod51, which fixesb, and leads to a nontrivia
value for *x f(x)dx. This asymptotic behavior is not valid
for l51 (d5D).

For d50 orD5`, Eq. ~2.5! reduces to the constant ke
nel equation with exact solutionf 0(x)52e2s and
f `(s)5212de2s ~note that the larges asymptotics become
the exact solution for alls in these cases!. For d51 and
D51, an exact analytic solution is also known for the tim
dependent equation, the scaling function beingf (s)
}s23/2e2s @27#, with z5` andS(t)}et.

Now, for givend andD, and plugging the expected sma
s behavior f (s);s2t into Eq. ~2.5!, one first gets that
t,11l511d/D. Then, matching the behavior of bot
sides of Eq.~2.5! @18,30#, one finds

t522E
0

`

f ~x!xldx. ~2.7!

If a.t21 we obtain by multiplying Eq.~2.5! by xa and
integrating@18,28#

2~12a!E
0

`

xa f ~x!dx5E E
0

`

f ~x! f ~y!KD
d ~x,y!

3@xa1ya2~x1y!a#dxdy.

~2.8!

All these results are valid for any homogeneous kernel w
l,1 andm50 @18,30#.

C. Existing analytical and numerical results

Most existing analytical results form50 kernels are to be
found in the beautiful series of papers by van Dongen a
Ernst @16,18,28,30#. Apart from results mentioned earlie
they determined the smallx subleading behavior of the sca
ing function, and they found some inequalities fort in the
casesd51 andD51. In 1984, Leyvraz@29# proposed the
analytical resultt5111/2D for the kernelKD

d with d51,
but in 1985, using exact inequalities, van Dongen and E
showed that this result was erroneous and explained wh
was so@28#. The argument of Leyvraz leading to this resu
is perfectly valid for class I kernels withm.0 for which it
predicts the correct exponent, but it breaks down form50
kernels. We mention this fact for some references to
wrong resultt5111/2D can still be found in some recen
articles.

We now review various kinds of numerical studies co
cerning the polydispersity exponentt. These studies dea
with the kernelKD

d .
Kang et al. @19# simulated a model of particle diffusion

and coalescence~PCM! that can be shown to be exact
equivalent to Smoluchowski’s equation. They also nume
cally directly computed the solution of the equation itse
Their results concern thed51 case. They surprisingly found
values oft in contradiction with the exact boundt>1 ~see
Sec. III! ~for D54, they foundt50.63). By comparison
between their two methods of computation, they conclud
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5468 55STÉPHANE CUEILLE AND CLÉMENT SIRE
that in both cases they observed a pseudoasymptotic s
with wrong exponents but apparent scaling, and that the
tual asymptotic scaling regime appeared at times too larg
be seen by their simulations. This illustrates the drawbac
considering the direct time evolution of the system: the
tual asymptotic regime may not be reached within the acc
sible numerical simulation time scale.

Krivitsky @20# numerically solved Smoluchowski’s equa
tion for the time dependent distribution for the kernelKD

d ,
for D51,d<1, for which he determined ten values fort ~see
Fig. 1!. Comparison with analytical results obtained
analysis of the scaling equation~infinite time limit! in the
present article will assess the fact that in this case
asymptotic regime was actually reached by Krivitsky’s so
tion. These numerical results will be found to be in excelle
agreement with our variational method of Sec. V.

Song and Poland@21#, computed the large time evolutio
of the number of clustersn(t)}t2z8, and asz85z(22t)
when t.1, andz85z, when t,1, we can extractt from
their data~for which t.1). Their method consists in solvin
the equation forn(t) as a power series in timet, and to
extract the exponentz8 by manipulations of this series. The
treated only the casesd51,D52 and d52,D53. In the
cased51,D52, they present two different results in th
text. They first considerK2

1 and find 1/z850.5760.01, then
they extend their method toKd

d21 and in the cased52,
which is exactly the same as previously, they fi
1/z850.588 ~they do not give any error estimate in th
case!. In the following, we shall see that we believe the fi
result to be closer to the exact one. In the next section,
shall see that their result ind52,D53 strongly violates ex-
act inequalities, and thus is wrong.

FIG. 1. InD51, the comparison between the results obtained
@20# by Krivitsky, the variational approximation with three param
eters and eight moments, and theO(d2) perturbative expansion o
t, illustrates the efficiency of the variational approximation. Inde
the agreement between the numerical solution of Smoluchows
equation@20# and the variational approximation is excellent. T
variational approximation is even in closer agreement with
smalld perturbative expansion than Krivitsky’s result, and althou
both methods recover the exact resultt53/2 forD51, Krivitsky’s
curve seems to have an accident in the vicinity ofD51, whereas
the variational result is smooth.
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The conclusion of this section is that no complete study
the value oft had been performed until now because o
lack of appropriate numerical tools. More precise analyti
results would also certainly be welcome to guide numeri
works. We see that simulating or solving for the time evo
tion of the distribution function may not enable us to rea
the asymptotic scaling regime, and a guideline of the pres
work will be to directly rely on the scaling equation corr
sponding to the infinite time asymptotic state itself.

III. EXACT BOUNDS

In the next three sections, our workhorses will be bo
Eqs.~2.7! and ~2.8!.

We first show thatt>1, for d>1. Supposet,1 and
consider Eq.~2.8! with a50,

2E
0

1`

f ~x!dx5E E
0

1`

f ~x! f ~y!~x1/D1y1/D!ddxdy.

~3.1!

For d>1, we have (x1/D1y1/D)d>xd/D1yd/D, which leads
to * f (x)dx>* f (x)dx* f (x)xd/Ddx ~in the bulk of the text,
all integrals should be understood from 0 to`). Comparing
with Eq. ~2.7!, this leads to 1>22t or t>1, which is con-
tradictory. Notice that Eq.~2.8! with a52 for d51 and
D51 leads to*x2f (x)dx52@*x2f (x)dx#@*x f(x)dx#, and
we recover the exact resultt522*x f(x)dx53/2 @27# in a
very simple way. These results were already obtained by
Dongen and Ernst@28,30#, who were able to find in the cas
D51 the exact inequality, 2d,t,22212d(12d)/
(222d), which shows thatt52d1O(d2) whend→0. This
interesting result will be generalized to anyD in the next
section and theO(d2) term will be computed inD51. They
also found weaker inequalities ind51, but no result was
obtained for generald andD.

In order to deal with the general case, we introduce
extremely simple method to get lower and upper bounds
t. We rely on Eq.~2.8! valid for a.t21. Combining Eqs.
~2.7! and ~2.8!, we get

t522~12a!

E E
0

`

g~x,y!dxdy

E E
0

`

g~x,y!A~x/y!dxdy

, ~3.2!

where A(u)5@11ua2(11u)a#(11u1/D)d/(ua1ud/D)
satisfies A(u)5A(1/u) and g(x,y)5(xayd/D

1xd/Dya) f (x) f (y). The ratio in Eq.~3.2! can then be inter-
preted as the inverse of a kind ofaverageof A(x/y) with the
weight g(x,y). For a givena<d/D, we numerically deter-
mine the maximumMa and minimumma of the function
A(u). Using Eq.~3.2!, this gives

22~12a!/ma<t<22~12a!/Ma . ~3.3!

We then choose the best values ofa<d/D compatible
with a.t21 leading to the tightest bounds. More precise
we proceed the following way: we start witha5d/D ~as
t,11d/D), from which we obtain some upper and low
boundtm andtM . If tM,11d/D, we can repeat the opera

n
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tion with tM21,a,d/D which leads to newtm andtM ,
otherwise we cannot improve the trivial upper bou
11d/D. If the newtM is bigger thana11, we must reject
this attempt, and keep the old values of both the upper
lower bound, but if it is smaller, then we can repeat t
process and keep on this way until we obtain the tigh
bounds.

For a generalm50 kernelK(x,y), this method can be
straightforwardly extended, withA(u)5@11ua2(11u)a#
K(1,u)/(ua1ul) andg(x,y)5(xayl1xlya) f (x) f (y).

A superficial plot of the functionA(u) for KD
d may lead to

the incorrect conclusion that its minimum is always obtain
at u50 with A(0)51. In fact a more careful study ofA
shows that for certain values ofa, the actual minimum is a
u.0 but very close to 0. For u→0,
A(u);11du1/D2ud/D2a, and we see that ifa.(d21)/
D, there is a local minimum forum.0 with A(um),1. For
d.1, and a5(d21)/D1«, we get um;exp@2ln(d)/«#,
which vanishes exponentially when«→0 (d.1). Indeed,
even whena is not so close to (d21)/D, um may be very
small. For instance, for d52,D53, and
a50.585 98.(d21)/D50.333 . . . , we find that
um51.36531024, and A(um)50.7322, which leads to a
nontrivial lower bound of 1.4349 fort.

Actually, it is easily seen that the inequalities obtained
van Dongen and Ernst~in the cased51 or D51) corre-
spond toa5d/D. In fact, even in this case,Ma andma are
nontrivial, and they used someexplicit bounds ofMa and
ma , which do not lead to the tightest bounds fort.

Thus our method consists in computing theactual value
of ma andMa , and varyinga to optimize these bounds
which allows us togreatly improvevan Dongen and Ernst’s
explicit inequalities forD51 or d51, and to obtain new
exact bounds ford.1. For instance, for the physically inte
esting cases~see below! (d51,D52), (d51,D54), and
(d52,D54) we, respectively, found 1.084<t<1.147,
1<t<1.075 ~compared to 1<t<1.28 and 1<t<1.109 in
@28#! and 1.25<t<1.5.

For d52,D53, we find 1.4349<t<1.585, which just
discards the valuet51.244 found by Song and Poland@21#,
and strongly questions the validity of their approach. T
exact bounds we obtained ind51,D52 are violated by their
alternative value 1.150 fort but not by their first result
1.123~see Sec. II C!.

It is useful to note that for anyD, with a5d/D,
A(u)→1/2 whend→0, which entails thatt→0 @from Eq.
~3.3!# in this limit.

To conclude with this topic of inequalities, let us consid
Eq. ~3.3! with a5d/D. In this case, whenD→`,

A~u!5
1

2
~11u21/D!d@11ud/D2~11u!d/D#

→H 2d21, 0,u<1

1

2
, u50

~3.4!

hencema→1/2 andMa→2d21. Therefore the upper boun
for t in Eq. ~3.3! tends to 22212d. This is strictly less than
1 for d,1, which means that for anyd,1, there exists a
d

st

d

y

e

r

finite critical Dc(d), such thatt,1 for anyD.Dc . This
result will be used in Sec. IV.

IV. PERTURBATIVE AND NONPERTURBATIVE
EXPANSIONS

In this section we use the exactly solvable limitsd50 and
D5` as a basis for a perturbative expansion. We also c
sider the cased→`, keepingd/D5l constant, for which
we find a nonperturbative expansion.

We saw that limd→0t50. What about theD→` limit of
t? In fact, although strictly atD5`, t is equal to 0, as
f (x)5212de2x, we will see thatt`5 limD→`t.0. This re-
sult was already noticed by van Dongen and Ernst ind51
@28#. Sincet,11d/D we get that

t`<1. ~4.1!

What can we learn from Eq.~2.7! in the largeD limit? We
see that the limit fort is

t`522E
0

1`

f `~x!dx522212d ~4.2!

provided that

lim
D→`

E
0

1`

@ f D~x!2 f `~x!#xd/Ddx50. ~4.3!

Ford,1, this result is consistent, since, from the last rem
of Sec. III, we gett`<22212d,1.

However, for d>1 we know thatt>1, hencet`51,
which means that ford.1,

lim
D→`

E
0

1`

@ f D~x!2 f `~x!#xd/Ddx512212d.0 ~4.4!

while in d51, Eq. ~4.3! is true.
Now that we know the largeD limit of t (t`51 for

d.1 and t`522212d for d<1), as well as its smalld
limit ( t→0), let us compute the corresponding asympto
corrections.

A. Small d expansion

First, consider the limitd→0. We expandf in series in
d: f (x)5 f 0(x)1d f1(x)1O(d2), f 0(x)5e2x. A systematic
way of expandingt would be to write down a linear~self-
consistent! differential equation forf 1 to solve it and plug
the result into Eq.~2.7!.

However, as far as the first order is concerned we can
it without solving for f 1. By expanding the integral expres
sion of t, Eq. ~2.7!, we get

t522E
0

1`

f ~x!xd/Ddx52
d

DE0
1`

f 0~x!lnxdx

2dE
0

1`

f 1~x!dx1O~d2!. ~4.5!
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Then we expand both sides of Eq.~3.1! to get an equation for
* f 1(x)dx:

E
0

1`

f 1~x!dx5
1

2E E
0

1`

f 0~x! f 0~y!ln~x1/D1y1/D!dxdy

2E
0

1`

f 0~x!dxE
0

1`

f 1~x!dx ~4.6!

hence * f 1(x)dx52**e2x2yln(x1/D1y1/D)dxdy. After
eliminating* f 1(x)dx, we get
t

t52dJD1O~d2!,

JD5E
0

1

lnF11S 12u

u D 1/DGdu. ~4.7!

Let us mention that this result can be systematically gen
alized to the case of any homogeneous kernel of the fo
@g(x,y)#d, leading tot52d*0

1lng„1,(12u)/u…du1O(d2).
Although it may seem a bit tedious, it is interesting

recover this result in another way, as it shows that the sm
x behavior off 1 is consistent with thed→0 expansion of the
power lawx2t5122dJDlnx1O(d2). Let us write down the
linear equation forf 1,
x f18~x!12e2xE
0

x

f 1~y!eydy52e2xE
0

1`

f 1~y!dy14e2xE
0

1`

e2yln~y1/D1x1/D!dy22e2xE
0

x

ln@y1/D1~x2y!1/D#dy.

~4.8!

With u5exf 1 we get the following equation:

x~u82u!12E
0

x

u~y!dy52E
0

1`

u~y!e2ydy14E
0

1`

e2yln~y1/D1x1/D!dy22xJD2
2

D
~xlnx2x!, ~4.9!
-
of

t
a-

r
s
of

n
a
V.
which implies, after taking the derivative of Eq.~4.9!,

xu91~12x!u81u52
2

D
lnx22JD

1
4

DE0
1`

e2y
x1/D21

y1/D1x1/D
dy.

~4.10!

The solutionu of Eq. ~4.10! involves two integration con-
stants, one being fixed by the fact thatf 1 should go to zero a
largex, the other,c0, by writing the compatibility with Eq.
~4.9!, which can be done by taking thex→0 limit the latter
equation. From the expression of the solution~Appendix C!,
or directly from Eq.~4.10!, it is easily seen thatu has the
asymptotic expansion forx→0:

u~x!5b0lnx1O~1!, ~4.11!

with b05c022/D.
We know that f (x);cx2t when x→0. When d→0,

c→2, andt5dt11O(d2), hence up to orderd we expect

f ~x!;2t1lnx ~4.12!

so that we interpretb0 as22t1,

t52d
b0
2

1O~d2!. ~4.13!

The x→0 limit of Eq. ~4.9! is

b052E
0

1`

f 1~x!dx2
4

DE0
1`

e2xlnxdx. ~4.14!
The integration of Eq.~4.10! between 0 and1` yields

2b01E
0

1`

f 1~x!dx52JD2
2

DE0
1`

e2xlnxdx.

~4.15!

The combination of Eqs.~4.14! and~4.15! yieldsb0, which,
substituted into Eq.~4.13!, eventually leads to the same re
sult for t as previously obtained through the expansion
Eq. ~3.1! and Eq.~2.7!.

For D51, we get t52d1O(d2), in good agreemen
with direct numerical integration of Smoluchowski’s equ
tion performed by Krivitsky@20# and shown in Fig. 1~see
below!. This result forD51 also coincides up to orde
O(d) with the inequalities fort that we obtained above, a
noticed in Sec. III. This is not the case for other values
D.

The orderO(d2) requires the computation off 1. How-
ever, in the special caseD51 it is possible to obtain explic-
itly the O(d2) term by expanding Eq.~2.8! for a5d/D ~see
Appendix B!. We obtain

t52d1S p2

3
24Dd21O~d3!. ~4.16!

In Sec. V ~see Fig. 1! we shall see that this result is i
excellent agreement with both Krivitsky’s results and
method of approximation that we shall introduce in Sec.

B. Large D expansion

Now, we perform an expansion in powers of 1/D for
d<1, expanding f (x)5 f `(x)1(1/D) f 1(x)1(1/D2) f 2(x)
1O(1/D3).
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Perturbative expansion in d,1. In d,1, as mentioned in
Sec. III, t,1 for anyD above a finite criticalDc(d). As a
consequence, Eq.~2.8! can be written for anyD.Dc(d).
Therefore we can expand this equation for largeD in powers
of 1/D, and we find at first order,

E
0

1`

f 1~x!dx5d 2d22E E
0

1`

f `~x! f `~y!~ lnx1 lny!dxdy

12dE
0

1`

f `~x!dxE
0

1`

f 1~x!dx ~4.17!

hence

E
0

1`

f 1~x!dx52dE
0

1`

f `~x!ln~x!dx5212ddg,

~4.18!
an

o

n

y

whereg is Euler’s constant, while from Eq.~2.7!,

t5t`2
d

DE0
1`

f `~x!ln~x!dx2
1

DE0
1`

f 1~x!dx1OS 1

D2D .
~4.19!

We conclude, using Eq.~4.18!, that the first order correction
to t` is zero.

The same method also gives access to the next term:

t5t`2
d2

2D2E
0

1`

f `~x!~ lnx!2dx2
d

D2E
0

1`

f 1~x!ln~x!dx

2
1

D2E
0

1`

f 2~x!dx1OS 1

D3D ~4.20!

while
E
0

1`

f 2~x!dx5
1

2E E
0

1`

f `~x! f `~y!
2d

8
$~d11!@~ lnx!21~ lny!2#12~d21!ln~x!ln~y!%dxdy

12d21dE E
0

1`

f 1~x! f 1~y!~ lnx1 lny!dxdy12d21S E
0

1`

f 1~x!dxD 212E
0

1`

f 2~x!dx. ~4.21!
the
e

the
ral

s

q.

l

for

it
Using the known value of* f 1 we get

2E
0

1`

f 2~x!dx5
d2

4 E0
1`

f `~x!~ lnx!2dx

1dE
0

1`

f 1~x!ln~x!dx

1
212dd

4 S p2

6
1dg2D ~4.22!

(g being Euler’s constant!, which leads to

t522212d1
p222dd~12d!

12D2 1OS 1

D3D . ~4.23!

Once again we were able to obtain a highly nontrivial exp
sion fort without solving forf 1 and f 2 themselves, although
this can also be achieved this way. Note that in the limit
largeD and small d, Eqs. ~4.7! and ~4.23! coincide up to
orderO(d/D2).

Perturbative estimate for d.1. In the cased>1, we have
shown thatt>1 and sincet,11d/D, we see thatt→1 for
D→` and finite d>1. As f 1 is nonintegrable, Eq.~2.8!
cannot be used witha50, and the previous perturbatio
breaks down.

Nevertheless we can try to obtain an estimate oft in the
following way: we make the ansatzf; f `1c/s11«e2s. We
plug it into Eq. ~2.7! and Eq.~2.8! for a5d/D, and after
some algebra~see Appendix D! we see that for consistenc
« must be of order 1/D and thatc5(12212d)(d/D2«),
-

f

and eventually that«5k/D1O(1/D2) wherek is the solu-
tion of the nonlinear equation:

2

11212d 5E
0

1

~11v1/~d2k!!ddv. ~4.24!

This equation always has a solution consistent with
exact bound 1,t,11d/D. For instance, in the cas
d52, D54 we obtaint'1.462. Though it is still of order
1/D, the obtained perturbative estimate depends on
choice ofa. a5d/D seems, however, to be the most natu
choice.

In d51, c vanishes and we do not learn much. All term
of thed,1 series fort in powers of 1/D vanish ford→1, as
can be seen in Eq.~4.23! for the two leading ones. The
reason is the following: the perturbation is derived from E
~3.1! under the assumption thatt,1. In d51, such an as-
sumption yields 2* f (x)dx52@*x1/Df (x)dx#@* f (x)dx#
hencet51. Consequently the perturbative value oft tends
to 1 whend→12. As will be illustrated below by numerica
results, for a givend.1 the criticalD5Dc(d) above which
t,1 tends to infinity whend→12, entailing the vanishing
of the perturbation validity domain inD. Thus the correction
to t51 for largeD may benonperturbativein d51.

If we now take thed→` limit in Eq. ~4.24!, we obtain
t.11l222dl (l5d/D), a nonperturbative behavior in
d which is to be related to the results below, obtained
d→`, D→`, keepingl constant.

C. Large d and D

We now present a nonperturbative calculation in the lim
of large d and D, keeping the ratiol5d/D fixed. In this
limit, the kernel can be written
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~x1/D1y1/D!d52d~xy!l/2@11O~d/D2!# ~4.25!

and surprisingly transforms into the well-studied ‘‘produc
kernel @2,18,30,19–21,29#. Assuming scaling~a still contro-
versial subject @20#!, one can easily show tha
t511l511d/D @18# @see also Eqs.~1.3! and~1.4! and the
discussion below them, as it corresponds tom5l/2.0#.

We can show that including higher order corrections
power of 1/D does not change the value oft, so that the
correction tot511l is certainly nonperturbative. Conside
the expansion of the kernel:

K~x,y!52d~xy!l/2@1122dO~1/d2!#. ~4.26!

The rescaled functionf̃52df is the solution of the scaling
form of Smoluchowski’s equation with the kern
K̃522dK(x,y), which is equal to (xy)l/2 at every order in
1/d51/(lD). In fact, we can estimate this correction by a
suming that for finited andD,

f̃ ~s!;cl /s
11l2«d ~4.27!

for s→0. Plugging this estimate into Eq.~2.7! with the limit
kernel of Eq.~4.25!, we first get

«d'22d
cl

~12l!
. ~4.28!

cl can be determined by matching the coefficients of
leading terms in Eq.~2.5! using the kernel of Eq.~4.25!.
After a straightforward calculation, one gets in thed→`
limit,

cl52~12l!I l
21, ~4.29!

I l5E
0

1

@u~12u!#212l/2@ul1~12u!l21#du,

~4.30!

which leads to

t511l2212dI l
21 . ~4.31!

We thus find a nonperturbative~exponentially small! correc-
tion to t in the larged and largeD limit, consistent with the
result obtained above ford.1 and largeD. Note that Eq.
~4.29! is also consistent with the exact result thatt→1 as
D→` for finite d.1, a result that we obtain by settin
l50 ~as I l diverges!.

D. Summary of the results

We have shown that whenD→`, t→1 for d>1,
whereast→22212d,1 for d,1. We were able to derive
an O(1/D2) perturbative expansion ind,1, and we con-
vinced ourselves that the leading corrective term ind.1 was
of order 1/D, by giving an estimate of this correction. I
d51 both approaches break down and the largeD correc-
tions tot`51 are probably nonperturbative.

When d→0, t goes to zero, and we gave a first ord
perturbative expression ind, for anyD. ForD51, we also
found the explicit coefficient ind2.
-

e

r

Eventually, we showed that for a fixed homogene
l5d/D, t tends exponentially to 11l at larged. In the
following section we present a general numerical method
computet and we confirm our analytical result by perform
ing an extensive study of the functiont(d,D).

V. VARIATIONAL APPROACH

In this section we present a practical way of obtaini
good approximate values fort, without explicitly solving
Smoluchowski’s equation. Once again, we rely on Eq.~2.8!,
which holds for the exact scaling function@solution of Eq.
~2.5!#, for anya.t21. This equation isgeneral, and does
not depend on the specific kernel we study in this article.
a consequence, the methods we develop are general an
apply to any homogeneous kernel. We emphasize the fac
that this method does not intend to approach the whole s
ing function, but sets the focus on the computation oft @in
fact, numerically solving the scaling equation~2.5! for the
scaling function seems to be very difficult, and at least
difficult as directly solving the time-dependent equati
@31# #.

A. Principles of the method

The simplest way of approximatingt is to evaluate the
‘‘average’’ in Eq. ~3.2! using a reasonable trial weight func
tion g(x,y) instead of the unknown exact one. As a simp
start, we will expose a crude, but straightforward algorith
that illustrates the basic idea. Then we will develop the va
tional method itself, which is not much more intricate, b
much more effective.

A one-parameter choice for a trial weight function is o
tained by replacing in the above expression ofg(x,y) the
exact f (x) by f t(x)5x2texp(2x), which has the correc
leading asymptotics for smallx ~by definition oft) and de-
cays exponentially at largex, although not with the exac
asymptoticsx2d/De2x (d/D,1) @16#. Still, this functional
form is known to be a good approximation of the actu
f (x) obtained in simulations@20#, and is even the exact so
lution, but for a multiplicative constant, in thed5D51
case, which belongs to the special classl51 @27#. The first
idea that comes to mind is just to determinet self-
consistently such that Eq.~3.2! holds for f t , with a specific
choice ofa, for instance,a5d/D. This is readily done, by
an iterative method: starting from an initialt0, verifying pre-
viously obtained exact bounds, we construct the sequen

tn115~12«!1«@22~12a!Ra~ f tn
!#, ~5.1!

with

Ra~f!52

E E
0

1`

xaf~x!yd/Df~y!dxdy

E E
0

1`

f~x!f~y!K~x,y!@~x1y!a2xa2ya#

,

~5.2!

which converges, with a proper choice of 1.«.0, to a fixed
point corresponding to anf t verifying Eq.~3.2!. The numeri-
cal evaluation ofR(t) can be achieved with utter celerit
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and arbitrary precision, since it reduces to the calculation
one-dimensional integrals, and of a few values of theG func-
tion, thanks to a very convenient transformation~see Appen-
dix A!. We notice that it is unnecessary to include any m
tiplicative constant intof t , since it would just cancel out in
Eq. ~3.2!.

Of course, this algorithm should yield different values
t for different choices ofa, except in the special case whe
the exact solution is of the formf t . This corresponds to
d50, D5` andd51,D51, and this method converges b
construction, to the exact value oft, but for the round-off
errors. In the generic case, the variation can be n
negligible ~in d52,D54, t'1.371 for a5d/D, while
t'1.398 fora50.403) and the fixed pointt may even vio-
late exact bounds. For instance, in the cased51,D53 with
a5d/D we gett50.9894 whereas we know thatt.1. The
variation with a makes the method unreliable. I
d52,D54, it gives t'1.38560.015, compared to
t'1.43460.004 with the variational approximation, that w
now introduce, which, starting from the same basic id
proves to be much more effective.

Variational approximation. A much better and hardly
more intricate method is to choose a reasonable samp
values ofa, and minimize an error function measuring th
violation of the corresponding Eqs.~3.2!. This method can
be systematically improved by allowing forn free ‘‘fitting’’
parameters~including t itself! in the trial weightg(x,y). In
the following we will proceed by replacing the exactf by a
variational function of the form

f v~x,t0 ,t1 , . . . ,tn ,c1 , . . . ,ci !5x2t0e2x1(
j51

n

cjx
2t je2x

~5.3!

and we will minimize the error function,

x2~ f v!5(
i

@t0221~12a i !Ra i
~ f v!#

2, ~5.4!

to get a variational approximationtv5t0 of t. Brute force
should not be used in the evaluation ofx2: once again, Eq.
~A1! makes it possible to drastically reduce the computat
time, and to perform the evaluation ofx2 with an excellent
precision.

Of course, the values of the exponents inf v should not be
blindly chosen. van Dongen and Ernst@30# showed that the
subleading term in the smallx asymptotic expansion off is

}H x11l22t if t.11l2m1

xm12t if t,11l2m1

x2tlnx if t511l2m1 ,

~5.5!

with K(x,y)2xl}ym1xl2m1 whenx→`, whereas the exac
asymptotic at largex is }x2le2x. Therefore a good three
parameter class of trial functions should be

f v~x,t0 ,c1 ,c2!5S 1

xt0
1

c1
xt1~t0! 1

c2
xlDe2x, ~5.6!
f

-

f

n-

,

of

n

t1 being either 2t0212l ~if t0.11l2m1), or t02m1 ~if
t0,11l2m1). The smallx leading term inf v is t0 pro-
vided thatt0.l. The approximate valuetv is the value of
t0 at the minimum.

By construction, this method reproduces the exact res
for the constant kernel andd51,D51, since the exact scal
ing function is contained in those cases in the class of va
tional function we chose. In general, this method is ina
equate to approachf itself, and is just designed to compu
t, in the same way as the variational approach in quan
mechanics is designed to obtain eigenvalues but, in princi
not eigenfunctions.

B. Implementation

With a small numbern of variational parameters, we
choose to perform the minimization with the downhill sim
plex method described in@32# ~steepest descent, conjuga
gradient, or other methods could also be used, with the dr
back that these methods require extra evaluations ofx2 to
compute its gradient!. This method starts from an
n-dimensional simplex, i.e., n11 points in the
n-dimensional parameter space, and performs a sequen
geometric deformations until it contracts to a local minimu
of the function. It is not the fastest algorithm, but it eas
converges, and in our case where the computational bu
is low we do not need more sophisticated devices.

As in any optimization problem, the initial condition is
crucial parameter, but here there is the additional compl
tion that the smallest momentamin used in the computation
of x2 should be bigger thant21, and bigger thant021 at
any step of the algorithm. What information on the value
t we maya priori gather~exact bounds, perturbation expa
sion! should guide our choice. Anyway, we do know th
t,11l: starting with an initialt0 smaller than 11l and
amin.l should avoid any trouble. As we get a first approx
mation oft we will be able to decrease the value ofamin and
make it closer totv21, while refining the initial conditions.
A few Monte Carlo minimization steps can also be used
find a proper initial condition~but we scarcely needed thi
functionality in this work!.

Why should we choose as small anamin as possible? The
answer is that small moments probe the smallx divergence
of f (x), which is precisely what we are interested in. Ho
ever, we also need some intermediate and higher momen
probe the intermediatex and the largex decay to stabilize
consistent values ofc1 and c2. There should be at least a
many moments as variational parameter, otherwise th
would be an infinite number of minima. Too many momen
would cause excessive numerical round-off errors in
computation ofx2.

We tested round-off errors by computingtv for the ex-
actly solvable modelK1

1 for which f (x)}x23/2e2x, since,
were we endowed with infinite numerical precision, our
gorithm would yield the exact result in this case, as s
before, whatever thea i may be, provided that they all ar
bigger than 1/25t21.

With the three-parameter function introduced above, a
moments 0.55, 0.667, 0.783, 0.9, and 2, we fi
t51.499 976431026 (x251.9431028), the uncertainty
being due to variations with different choices for the initi
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values of the parameters and the tolerance on the size o
simplex ~the minimization algorithm stop criterion!. The
round-off errors increase with the number of moments a
the number of variational parameters. The error is much b
ger on c1 and c2, we find c150.1160.1 and
c2520.1260.1, instead of strictly 0. This means that th
sensitivity onc1 andc2 is small in the vicinity of the mini-
mum, and this method is not the right one to determine
scaling function~a negativec2 is unphysical here!, but it just
was not devised for this purpose: we just meant to comp
t, and for this quantity the accuracy is excellent.

C. Numerical results

We used this method to determine approximations ot
for the kernel (x1/D1y1/D)d. We compared our results t
numerical values obtained ford<1,D51 by Krivitsky @20#,
and to our perturbative and nonperturbative expansions.

All values were obtained from the three-parameter va
tional functions introduced earlier in this text. We used eig
moments, six in the interval@amin,0.9#, plus a52 and
a53. amin was adjusted to be as close totv21 as possible.
The computation time was from 1 to 10 seconds per run
a HP workstation. Two to five runs per point were necess
to adjust the parameters.

We also computed a few points with a different repa
tion of moments: five in the range@t21,d/D#, a50.9, 2,
3, as well as with only two variational parameters (c150),
and with four variational parameters@the additional exponen
being m12t in the case whent.11(d21)/D#. The ob-
served relative variations of tv were at most of a few
1023. In all cases,t was found to be consistent with exa
bounds.

FIG. 2. The exponentt was computed by the variational metho
for various values ofd andD. We show here some iso-d ~solid
lines! and iso-l ~dashed! (l5d/D) lines. The iso-d lines tend to
t522212d ~stars on the right axis! if d,1, and to 1 ifd>1. The
critical D above whicht becomes smaller than 1 tends to infini
whend→12, entailing the breakdown of the largeD perturbative
expansion inD>1. Thed51 iso-d line seems to tend exponen
tially to 1, while for d.1 the relaxation to 1 is slower. An inflec
tion point appears aboved'2. The iso-l lines exponentially satu-
rate to 11l at largeD.
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First, we consider the caseD51. Figure 1 shows the
comparison between variational approximations oft ob-
tained with the modus operandi we just exposed, values
tracted by Krivitsky @20# from a numerical solution of
Smoluchowski’s equation, and theO(d2) perturbative ex-
pansion. The agreement between the variational approxi
tion and Krivitsky’s results is excellent, which confirms th
effectiveness and efficiency of the method: the ratio com
tation time~a few seconds!/accuracy is impressive. Actually
the variational approximation looks smoother than Kr
itsky’s curve, which has two visible accidents~small cusps!
neard51 andd50.4, and the variational approximation
fully consistent with the exactO(d2) expansion at smalld to
which it clearly tends asymptotically, whereas Krivitsky
result tends to remain parallel to the perturbative cur
though close to it. Its good agreement with our infinite tim
results assesses the fact that Krivitsky’s solution actu
reached the scaling regime, which, as said in Sec. II, was
obviousa priori. We conclude that in this regime, the vari
tional approximation recovers and confirms the results
tained by numerical integration of Smoluchowski’s equatio

Once the effectiveness of the method was established
were able to carry out a systematic study oft(d,D), and to
control its validity thanks to the analytical results obtained
Secs. III and IV.

We show in Fig. 2 the functiont(d,D) (0.25<d<3,

FIG. 3. Iso-l curves computed by the variational method~solid
lines!, as a function ofd, for l51/2 andl52/3. As analytically
established,t tends to 11l at largeD. The agreement is good a
larged with the nonperturbative expansion~dashed lines!.
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d<D,8) plotted in a (t,D) diagram. Two kinds of curves
are shown. Solid lines represent some iso-d lines, i.e., the
function t(D) for a fixed value ofd, whereas dashed line
are iso-l (l5d/D) lines. The reliability of the approxima
tion is assessed by the comparison with analytical results
established in Sec. IV iso-d lines tend tot522212d ~stars
on the right axis of Fig. 2! if d,1, and to 1 ifd>1. As
expected, the criticalD above whicht becomes smaller tha
1 tends to infinity whend→12, entailing the breakdown o
the largeD perturbative expansion inD>1. Thed51 iso-
d line seems to tend exponentially to 1, which is consist

FIG. 4. In d52, the exponents computed by the variation
approximation are in good agreement with the perturbative la
D estimatet5111.849/D. From data, the actual asymptotic co
rection seems to be closer to 1.82/D. The cusp on the variationa
curve corresponds to the change of behavior with the occurrenc
an inflection point for aboved52.

FIG. 5. Ford51, the exponents computed by the variation
approximation display a much faster decay to theirD5` limit
(t`51), than ford.1. Indeed, as shown in this figure, the dec
seems to be exponential inD, with roughly t21}e21.15D, a non-
perturbative behavior to be related to the breakdown of the la
D perturbative approaches ford51.
s

t

with a nonperturbative decay in 1/D ~see below!. For d.1
the largeD decay is slower, as analytically predicted~we
found a 1/D perturbative correction, see below!. For d>2
the curves qualitatively shape changes and an inflection p
appears.

Iso-l lines exponentially saturate to 11l at largeD, as
analytically established before. Figure 3 shows the comp
son between the variational approximation and the nonp
turbative larged expansion of Eq.~4.31! in two cases,
l51/2 andl52/3. The agreement is once again excellen
larged.

In d51,D52, Song and Poland @21# found
t51.12360.016 ~using their first result!, which compares
well with our t51.109. In d52,D53, we find t51.528
which, unlike their result (1.243), is perfectly consistent w
the exact bounds 1.4349,t,1.585. Ind52,D54, we find
t51.434, which is in fair agreement with the perturbati
largeD estimatet51.462 of Sec. IV. In fact, as shown i
Fig. 4, the perturbative estimate is indeed a good approxi
tion of t in d52 forD>6, and the}1/D decay is confirmed
by the variational results. The cusp on the variational cu
is confirmed by the existence of an inflection point
d.2 curves, as mentioned above. Ind51, a nonperturbative
exponential largeD decay tot`51 is confirmed by Fig. 5.
We roughly findt21}e21.15D.

Eventually, we show in Fig. 6~for d50.25) that the
variational result is also in good agreement with the la
D second order perturbative expansion ind,1 (}1/D2).

As this section draws to a close, we shall say that t
variational method, although very simple, seems to be v
well adapted to the determination of the exponentt, as it is
fast and, at least in the case we studied in this article, v
accurate. It made it possible to acquire quantitative kno
edge oft in the whole parameter space of theKD

d kernel, the
most studied and the prototype of the notorious class II k
nels. The method is general and could help shed some
on the whole class of kernels, thus increasing the pract
use of Smoluchowski’s approach to understand aggrega
phenomena. This point is worth an example. This is precis
what is dealt with in Sec. VI.

l
e

of

l

e

FIG. 6. In d50.25, the exponents computed by the variation
approximation are in good agreement with the perturbative la
D estimatet522212d1p222dd(12d)/12D21O(1/D3).



b-
on
th
u

e
o

r

is
c
e
ru
a

w
ar

r-
-
b

ts

s

re
e
i-

i’s
e to

le
-

of
nly
n-
ere
e-

te-

-

he

p-
wn
eter-
te.
in
not
r-

ail-
ith
st
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VI. APPLICATION IN TWO-DIMENSIONAL DECAYING
TURBULENCE

In this section we would like to illustrate the results o
tained in this article by presenting an original applicati
outside the field of massive particle aggregation, namely,
dynamics of vortices in two-dimensional decaying turb
lence.

Recently, a statistical numerical model was introduc
@25,26# which describes the dynamics and the merger of v
tices with the assumption that the typical core vorticityv
and the total energyE;*v2d2x;( iv

2Ri
4 are conserved

(Ri is the radius of thei th vortex! throughout the merging
processes. This model reproduces the main features obse
in direct numerical simulations~see@25,26# for details!. For
instance, after noting that a distribution of vortex radii sat
fying P(R);R2b is equivalent to a Gaussian energy spe
trumE(k);kb26 @26#, the simulation of this model was abl
to reproduce the fact that starting from a Batchelor spect
E(k);k23 (b53), the system evolves systematically to
steeper spectrumE(k);k2g with g562b in the range
g'3;5 @26#.

Now, one expects that the collision kernel between t
vortices is somewhat intermediate between the ballistic h
disk form s;(R11R2) @21#, and the totally uncorrelated
form s;(R11R2)

2 @where the probability of colliding is
proportional to the probability that two randomly placed vo
tices overlap, see also below Eq.~2.1!#. Thus one can de
scribe approximately the decay of vortices due to mergers
means of Eq.~2.5! with 1<d<2 andD54, as two colliding
vortices merge into a new one withR5(R1

41R2
4)1/4 in order

to conserve energy and core vorticity. One thus expec
power law radius distribution P(R);R2b, with
b5D(t21)11 andt given by our model. We find value
of g ranging fromg'3.26 for d52 ~taking t51.434) to
g'4.95 ~taking t51.012) for d51, in good qualitative
agreement with observed exponents. As also found in di
simulations, the actual exponent~and here the value of th
effective correctd) could depend on the actual initial cond
tions (v, area occupied by the vortices; enstrophy!. Note
that the Batchelor limit caseg53 is obtained when taking
the naive strict upper boundt511d/D with d52 and
D54.
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VII. CONCLUSION

In this article, we tackled the notoriously difficult problem
of nontrivial polydispersity exponents in Smoluchowsk
approach to aggregation from an original angle. We chos
directly start from the scaling~infinite time limit! equation,
and we did not focus on the determination of the who
scaling function, which is the object of solving Smoluchow
ski’s equation, to concentrate ont itself, which actually
mainly depends on global~integral! equations. We think, and
illustrated this point on the example of a simplified model
two-dimensional turbulence, that in some cases, the o
knowledge oft would still be a good step towards the u
derstanding of the phenomenon. The choices we made w
fruitful and gave birth to new analytical and numerical r
sults.

From an analytical viewpoint, we were able to use in
gral equations to find some exact bounds fort, and, in the
specific case ofKD

d 5(x1/D1y1/D)d, we obtained some per
turbative and nonperturbative expansions oft, without ex-
plicitly computing the corresponding expansions for t
whole scaling function.

From a numerical viewpoint, we devised a variational a
proximation scheme, that recovers by construction kno
exact results, and can be used as a tool for extensive d
mination oft, since it is both very economical and accura
In addition, it is likely that the scaling function obtained
the variational approach is in many cases qualitatively, if
quantitatively, right. To illustrate its effectiveness, we pe
formed a comprehensive study oft for a wide range of the
parameters (d,D) of the kernelKD

d . This is a noticeable
advance, since very little quantitative knowledge was av
able for this kernel, although it was the prototype kernel w
a nontrivial t, and the object of much attention in the pa
@17–24,27–29#.
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APPENDIX A: A USEFUL FORMULA

E E
0

1`

x2t1y2t2e2x2yK~x,y!@~x1y!a2xa2ya#dxdy5G~21l1a2t12t2!@X~t1 ,a,t11t2!1X~t2 ,a,t11t2!#,

~A1!
s-
the
be
u-
n-
whereG is the gamma function, and

X~ t,a,q!5E
0

1K~1,u!@~11u!a212ua#

ut~11u!21l1a2q du. ~A2!

To demonstrate this formula is straightforward: just ma
the change of variablex5uv,y5v, and use the definition o
theG function:
e

G~x!5E
0

1`

tx21e2tdt. ~A3!

From a numerical viewpoint this formula makes it po
sible to implement very rapid and accurate code for
variational approximations we developed before. It would
very awkward and inefficient to use two-dimensional n
merical integration~especially here, as the integrand is si
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gular at the origin!. A startlingly economical way of comput
ing theG function is due to Lanczos and is described in@32#
~it is not much slower than the built-in exponential function!.

APPENDIX B: THE O„d2… TERM IN D51

We derive theO(d2) correction tot52d for D51, by
computing thed2 order of, respectively, Eqs.~2.7! and~2.8!
with a5d, to get

422a25c14E
0

1`

f 1~x!lnxdx14E
0

1`

f 2~x!dx,

~B1!

2a25
1

2E0
1`

e2x~ lnx!2dx1E
0

1`

f 1~x!lnxdx

1E
0

1`

f 2~x!dx, ~B2!

wheret52d1a2d
21O(d3), and

c54E
0

1`

e2x@ ln~x!#2dx14E E
0

1`

e2x2yln~x1y!

3 ln
xy

x1y
dxdy14S E

0

1`

f 1~x!dxD S E
0

1`

e2ylnydyD
1S E

0

1`

f 1~x!dxD 2. ~B3!

c can be computed since* f 1 is known from the first order
calculation. After some elementary transformations, we fi
thatc24*e2x(lnx)2dx52p2/324. Combining Eqs.~B1! and
~B2!, we find 412a25c24*e2x(lnx)2dx, hence eventually

a25
p2

3
24. ~B4!

APPENDIX C: THE LINEARIZED SCALING FUNCTION

We find the solution of the second order differential equ
tion ~4.10! for the linear coefficientf 1(x) in the smalld
expansion of the scaling function. Withu(x)5exf 1(x), the
latter equation is
n
f

d

-

xu91~12x!u81u52
2

D
lnx22JD

1
4

DE0
1`

e2y
x1/D21

y1/D1x1/D
dy. ~C1!

With v(x)5u(x)/(x21), this equation reduces to a first o
der differential equation forv8, and we find

f 1~x!5c0u0~x!e2x1c1~x21!22JD2
2

D
~11 lnx!

1
4

D
e2xE

0

x

dy1
ey1

y1~y121!2
E
0

y1
dy2y2

1/D21e2y2

3~y221!E
0

1`

dy3
e2y3

y3
1/D1y2

1/D ~C2!

and

u0~x!5ex2~x21!PS E
2`

x ey

y
dyD ~C3!

~‘‘P’’ means ‘‘principal value’’!.
In fact, the triple integral can be transformed into a simp

integral involving special functions. For our purpose, w
only need to know that this integral goes to zero wh
x→0, which is easily seen.

APPENDIX D: PERTURBATIVE ESTIMATE

For d.1, t511«(D) where «→0 whenD→`. We
make the ansatz

f ~x!' f `~x!1
c

x11« e
2x ~D1!

and plug it into Eq. ~2.7! to obtain 12«5212d

1cG(d/D2«), which means that, when D→`,
c'(12212d)(d/D2«). Then we make use of Eqs.~A1!
and ~2.8! to obtain
2S 12
d

D D ~12«!52222dE E e2x2y~x1/D1y1/D!d@xd/D1yd/D2~x1y!d/D#dxdy1222dcG~112d/D2«!@X~0,d/D,11«!

1X~11«,d/D,11«!#12c2G~2d/D22«!X~11«,d/D,212«!. ~D2!
The next step is to write down the limit of this equatio
whenD→`. We know thatG(x);x→01/x, and a change o
variablev5ud/D2« in the integral factorsX shows that

X~11«,d/D,11e!;X~11«,d/D,21«!

;~d/D2«!21*0
1~11v1/~d2D«!!ddv.
We obtain

25222d1222d
c

d/D2«E0
1

~11v1/~d2k!!ddv

1
c2

~d/D2«!2
E
0

1

~11v1/~d2k!!ddv. ~D3!
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k is the limit ofD«. Taking into account the value ofc, we
finally get

2

11212d 5E
0

1

~11v1/~d2k!!ddv5J~k,d!, ~D4!
-

e

e,

nd
t511
k

D
1OS 1

D2D . ~D5!

Equation~D4! has a unique solution 0,k,d since the inte-
gral J(k,d) is a decreasing function ofk, and
J(0,d)52d.2/(212d11).15J(d,d) ~for d.1).
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