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We consider the scaling solutions of Smoluchowski’s equation of irreversible aggregation, for a nongelling
collision kernel. The scaling mass distributibfs) diverges as™ " whens— 0. 7 is nontrivial and could, until
now, only be computed by numerical simulations. We develop pereral methodso obtain exact bounds
and good approximations ef For the specific kerne{g(x,y)z(xl"Derl’D)d, describing a mean-field model
of particles moving ind dimensions and aggregating with conservation of “mass’RP (R is the particle
radiug, perturbative and nonperturbative expansions are derived. For a general kernel, we find exact inequali-
ties for 7 and develop aariational approximatiorwhich is used to carry out a systematic study-¢d,D) for
Kg. The agreement is excellent both with the expansions we derived and with existing numerical values.
Finally, we discuss a possible application td &ecaying turbulencd S1063-651X97)02304-0

PACS numbsg(s): 05.20.Dd, 05.70.Ln, 64.60.Qb, 82.70;

[. INTRODUCTION The most popular approach to these aggregation problems is
Smoluchowski’s equatiofb], a master equatiofi5] for the

Aggregation phenomena are widespread in nature. Thegne-body distributiorN(s,t):
have such an impact on materials sciences, chemistry, and
astrophysics that a large amount of literature has been de- JIN(s,t)
voted to thenT1-4]. In such dynamical processes, particles ot
or objects as different in geometry and size as colloidal par-
ticles, galaxies, small molecules, vortices in fluids, droplets, toe
and polymers can merge to form a new entity when they —N(s,t)f
come into close contact or interpenetrate, through diffusion
(Brownian coagulationi5,6]), ballistic motion (ballistic ag-  where the aggregation kernii(x,y) is symmetric and is
glomeration[7-9]), exogenous growtlidroplet growth and  characteristic of the physics of the aggregation process on a
coalescencgl0]), or droplet depositiofi11]. more or less coarse-grained level. Such kinetic equations are

One is usually interested in the evolution of the StatiSticahJsua”y derived within a mean-field approxima’[ion1 where
distribution of the “mass”s, a quantity characteristic of density fluctuations are ignored. Mean-field approximation is
each particle, that is conserved in the coalescence processeitpected to be valid above an upper critical spatial dimen-
can be either the actual mass, the volume, the area, the elegion. This dimension is usually 2 for reaction-diffusion mod-
tric charge, or any other physical quantity, depending on thels, but van Dongen showed that it can depend on the kernel
underlying physics. [16]. Including some proper approximation of the density-

Great progress was achieved when it was prop¢&eH  density correlations in the kernel may improve Smoluchows-
and observed both in real experiments and in numericakj's approach17].
simulations that the mass distributidi(s,t) exhibits scale Mean field as it may be, Smoluchowski's equation is still
invariance at large time: highly nontrivial. No exact solution is available, except in a
very few specific casesee beloy, and extracting the non-
trivial exponentr for a specific system from the proper ki-
netic equation is not an easy task. The problem was clarified
by van Dongen and Erngtl8], who classified the kernels
according to their homogeneity and asymptotic behavior:

1 (s
=§f N(s1,t)N(s—sq,1)K(S1,5—51)ds;
0

N(s;,t)K(s,s1)dsy, (1.2
0

S

N(s,t)~S(t)'3f(W), S(t)~t2. (1.1

The divergence of the mass sc&8@) bears on the oblivion K(bx,by)=b"K(x,y), 1.3
of initial conditions and physical cutoff or discreteness, as
does the diverging correlation length of critical phenomena: K(X,y)~x*y"(y>X). 1.9
universality arises in dynamics as well, with new universality
classes. For a given physical system, the homogeneityis easily

The exponentg and 8 are often easily derived from con- determined using scaling arguments. We consider only non-
servation laws and physical arguments, but in many casesgelling systems withh<1 [18]. For »>0, the exponent is
polydispersity exponentr defined by f(x)~x"" when trivial and found to ber=1+\, whereas foru=0, 7 de-
x—0 is observed, whose value is nontrivial though univer-pends on the whole solutidnof the scaling equation derived
sal. The prediction of is still a challenge. from Eq. (1.2 [see Eq(2.5 below]. <0 does not lead to

Except for a few{usually one-dimensiondllD)] exactly  any power law behavior but rather to a bell-shaped scaling
solvable model$13,14, analytical results are still lacking. functionf [18].
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In the following, we shall focus on the=0 case for Section VI presents a possible application in the field of
which the exponent has so far only been determined nu- two-dimensional turbulence. We consider a model of diffus-
merically by direct simulation of Smoluchowski’s equation ing and merging coherent vortices, and Smoluchowski’s
[19,20, not an easy task2,19], by time serieg21], and of ~ €quation leads to non-Batchelor energy spectra with expo-
course by direct simulation of the physical system supposefi€nts in qualitative agreement with direct simulations found
to be described by the considered Smoluchowski equatiolf! the literature[25,26.

[2,6,7,9-12,19 In the latter case, direct comparison with
mean-field results is in principle rather delicate. These meth-
ods are quite heavy, which explains that very few values of
7 are known[20,21], most of them concerning a specific ~ Consider hyperspherical particles irdadimensional box,
kernel, K3 (x,y) = (x*P +y*P)4 (0<d=<D), which appears of polydisperse radiR with distribution F(R,t), evolving

in various physical applicatio®—4,17,22—24 the following way: at timet we choose the positions of their

Considering the ubiquity and the importance of thecenters with uniform probability i space. Then each pair
w=0 case leading to nontrivial polydispersity exponents,0f overlapping spheres of radi; andR, merges to form a
analytical results as well as more effective numerical methnew sphere of radius,
ods, making it possible to carry out extensive studies, are
certainly needed to use Smoluchowski’'s approach in a pre- R=(R?+RD)P 2.1)
dictive way. The purpose of this article is to provide both 1ol e '
and use them to perform a complete study-@d,D) for the
kernel K3 = (x'P +yP)d. These analytical methods consist where D is a parameter wittD=d. D can be the actual
of exact bounds, perturbative and nonperturbative expardimension of the spheres, as for instance in the case of
sions around exactly solvable limits, while we introduce aD=3 spheres deposited ond=2 plane[11]. Once each
variational scheme, leading to excellent approximations ofcoalescence has been resolved, we have reached time
T at extremely low computational cost, without directly solv- t+ 6t.
ing Smoluchowski’s equation. We end the paper with a prac-
tical application of our results in the field of two-dimensional
turbulence.

In Sec. Il we present a mean-field model of aggregation of The conserved variable &=RP®, and is continuous. We
D-dimensional spheres diffusing in drdimensional space shall callsy the physical lower cutoff, that is, the charge of
and coalescing with conservation of their volume, for whichthe smallest sphere in the initial condition. Since the radius
we derive a Smoluchowski equation with the kernel ©f @ surviving sphere can only in_crease through coalespence,
Kg:(X1/D+y1/D)d_ Under the scaling hypothesis, we write N(s,t)=0 for s<sy and for any time>0. Smoluchowski’'s

down the equation for the scaling function, determine theequa’uon consists just in a balance of collisions. The r;/gmber

exponentz and B, and derive an integral equation feras of %O”'SI'O”S dbgt\(/jveen (tjwotlspgeres_tofd r_adg:%_ and S2 |
well as a series of integral equations for the moments of th&2ndomly and independently ceposited in Imensiona

: : 1/D 1/Dyd H
scaling functionf. This section is intended merely to clarify mz@um '.SN(Sl’lt’tz'\ll(szl’.g)Qd(lsl VJ\FISZ t))t Whtireﬂd |sche
notations, to present the state of the art, and to make a fe\g/' imensional total solid angie. Yve obtain the equation

II. MODEL AND SCALING

A. Derivation of Smoluchowski’'s equation

useful remarks. N(s,t+ ot)—N(s,t)
Sections Il and IV present analytical results for the pre-
viously introduced kernet? . Section Ill describes a method 1F d
. . = a N ] - ] 7
to obtain exact bounds for any kernel, based on integral a1 2)0 (S1,ON(s=81,0Kp(81,5=81)dsy

equalities established in Sec. Il.
Section IV deals with expansions efaround its value for -~ i d
exactly solvable kernels. Starting from the remark tigt N(S't)fo N(s1,DKp(s:s)dsy 3
reduces to the constant kernel in both-0 andD —« lim-
its, for which an explicit exponential solution is known, we
find some perturbative expansions in both limits. In the largevith KS(x,y) = (x*P+y¥P)d. We can get rid of the multi-
D limit with d/D=N\ fixed, the kernel reduces to’gy)* plicative constant, by properly choosing the time ustitand
and we show that— 1+ \, the first correction being expo- by replacing the finite difference in time by a partial deriva-
nentially small at largel, and thus nonperturbative. tive to exactly obtain Eq(1.2). We notice that the only ap-
In Sec. V we present a variational approximation based ofproximation used to derive the equation is to neglect multiple
integral equations for the moments bf and valid forany  collisions, for the system is intrinsically mean-field.
homogeneous kerneThis method reproduces some known The kernelkKd(x,y) = (x*P+y'P)d has been introduced
exact results, and is used to computéor a wide range of in many contexts from molecular coagulatifh7] to cos-
d and D, the results being summarized in Fig. 2. The ap-mology[20,22 for specific values ofl andD, and is one of
proximation is compared to the few existing numerical re-the most studied in the literatufd7,18,20—22,27—29al-
sults[20,21] as well as with analytical expansions derived inthough very few analytical results are known. This kernel
Sec. IV, with excellent agreement and very low computa-has\=d/D and u=0. Exact solutions are available in the
tional cost. cased=0 or D= (constant kerne[[5], andd=D =1 [27].

1/D) d
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B. Scaling A careful study of the large behavior off shows that if

Now, we introduce the scaling form dd(s,t). We first A<1 (d<D), f(s)~c.ds e, with Cwlzf_cl)/ng
write the conservation law. The total mass in the system i$X,1—X)x *(1—x) *dx [30]. We choose the solution cor-
§0°°sN(s,t)ds~S(t)zfﬁfg‘”xf(x)dx and is conserved, responding to5=1, which fixesh, and leads to a nontrivial
value for [xf(x)dx. This asymptotic behavior is not valid

for \=1 (d=D).

Ford=0 or D=, Eq. (2.5 reduces to the constant ker-

nel equation with exact solutionfy(x)=2e° and
f..(s)=21"%"° (note that the largs asymptotics become

which impliesB=2, implicitly assuming that the integral of
xf(x) converges, i.e., in terms of the smalldivergence of

f, that 7<<2, which will be shown below. We consider the
total  number of particles in the system

n(t)=Jo "N(s,)ds. It behaves at large fime as "0 o solution for alk in these cases For d=1 and
st Bf;ols(t)f(x)dx' If 7<1, n(t)~S())* 'Bfg f(x)dx D=1, an exact analytic solution is also known for the time
whereas if7>1, n(t)=S(t)#"". If r=1, the integral di- dependent equation, the scaling function beirigs)
verges as [[§(t)], hencen(t)=S(t)* AIn[S1)]. x5~ %275 [27], with z=% and S(t)x=e'.

As promised, we are now able to show that2. If Now, for givend andD, and plugging the expected small
7>2, the total charge in the system is proportional tos behavior f(s)~s™ " into Eq. (2.5, one first gets that
S(t)™ A, enforcing =17. As a consequence)(t) would 7<1+X=1+d/D. Then, matching the behavior of both
have a nonzero limit, which is impossible. To summarizesides of Eq.(2.5) [18,30, one finds

these results, we have, wit(t)oct =2,

—9__ ” A
y|? if 7<1 2.4 If a>7—1 we obtain by multiplying Eq(2.5) by x* and
z2(2—7) if m>1. ' integrating[18,2§
The derivation of the scaling equation is rigorously de- “ _ * d

scribed in[30], where it is shown tha§(t) ~wt* w being 2(1-a) 0 X (x)dx= 0 F)T(y)Kp(x.y)
some positive constant characteristic of the time dependent
equation. Plugging the scaling form of the distribution into X[X*+y*—(x+y)*]dxdy.
Smoluchowski’'s equation, and matching the lardeehavior 2.9
of both sides of the equation, yields=-D/(d—D) and the '
equation for the scaling function, All these results are valid for any homogeneous kernel with

W[Sf’(S)‘f’Zf(S)] A<1 and,u=0 [18,3(]

C. Existing analytical and numerical results

+ oo
=fsf f(s1)K(s1,5)ds
(s) 0 (51)Kp(s1,9)ds, Most existing analytical results far=0 kernels are to be

1rs found in the beautiful series of papers by van Dongen and
= _ d _ Ernst[16,18,28,3Q Apart from results mentioned earlier,
2J'0 f(s)f(s=s)Kp(sys=s1)ds,. @9 they determined the smatlsubleading behavior of the scal-
ing function, and they found some inequalities foin the
If 7=1 each term of the right hand side of E@.5 is casesd=1 andD=1. In 1984, LeyvraZ29] proposed the
separately divergent and they should be properly groupegnalytical resultr=1+1/2D for the kernelk& with d=1,
for instance, but in 1985, using exact inequalities, van Dongen and Ernst
, showed that this result was erroneous and explained why it
w[st'(s)+2f(s)] was so[28]. The argument of Leyvraz leading to this result
+oo is perfectly valid for class | kernels with>0 for which it
=f(3)f f(s1)Kp(s1,8)ds; predicts the correct exponent, but it breaks down fer0
s/2 kernels. We mention this fact for some references to the

sl2 wrong resultr=1+1/2D can still be found in some recent
—f f(s){f(s—s)Kp(s1,5—51) articles.

0 We now review various kinds of numerical studies con-
—f(s)K3(s1,5)ds; . (2.6)  cerning the polydispersity exponent These studies deal

with the kernelK .

Another way of taking care of these divergences is to be Kang et al. [19] simulated a model of particle diffusion
found in[18,30Q. and coalescencéPCM) that can be shown to be exactly

As we are only interested in the exponent affecting theequivalent to Smoluchowski’s equation. They also numeri-
small s behavior off, we shall sew to unity by changing cally directly computed the solution of the equation itself.
f to w¥?f. If f(s) is a solution of Eq.(2.5), then Their results concern th#=1 case. They surprisingly found
b1*%Pf(ps) is also a solution. The value tfis often fixed  values ofr in contradiction with the exact bountg=1 (see
by imposing [xf(x)dx=1, but we will make a different Sec. ll) (for D=4, they found7=0.63). By comparison
choice for reasons that will become clear later. between their two methods of computation, they concluded
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1.6 T e T AR . The conclusion of this section is that no complete study of
] » the value ofr had been performed until nhow because of a

141 T C:mr;ﬂ,('(w'wky) ] lack of appropriate numerical tools. More precise analytical

I perturbative 2nd order results would also certainly be welcome to guide numerical

: works. We see that simulating or solving for the time evolu-

10 : tion of the distribution function may not enable us to reach

the asymptotic scaling regime, and a guideline of the present
T 08" ] work will be to directly rely on the scaling equation corre-
sponding to the infinite time asymptotic state itself.

0.6 1

04l V4 ' ] Ill. EXACT BOUNDS

ozl ] In the next three sections, our workhorses will be both

’ Eqgs.(2.7) and(2.9).

0.0 . We first show thatr=1, for d=1. Supposer<1 and

00 01 02 03 04 05 06 07 08 09 10
d

consider Eq(2.8) with =0,

+ o0 + 00
FIG. 1. InD=1, the comparison between the results obtained in 2] f(x)dx= f f f(x) f(y)(x*P +yP)ddxdy.
[20] by Krivitsky, the variational approximation with three param- 0 0

eters and eight moments, and 1©¢d?) perturbative expansion of (3.)

7, illustrates the efficiency of the variational approximation. Indeed, UD , . AD\d— wd/D , ..d/D .
the agreement between the numerical solution of Smoluchowski’gOr d=1, we have X" +y" )*=x""+y"", which leads

equation[20] and the variational approximation is excellent. The 0 ff(X)dXEIf(X)def(X)Xd/DdX (in the bulk of the text,
variational approximation is even in closer agreement with thedll integrals should be understood from Ost9. Comparing
smalld perturbative expansion than Krivitsky’s result, and althoughWith Eq. (2.7), this leads to £2— 7 or 7=1, which is con-
both methods recover the exact rest#t3/2 for D=1, Krivitsky’'s ~ tradictory. Notice that Eq(2.8) with «=2 for d=1 and
curve seems to have an accident in the vicinityDof 1, whereas D=1 leads tofx?f(x)dx=2[ [x*f(x)dx][ [xf(x)dx], and
the variational result is smooth. we recover the exact resut=2— [xf(x)dx=3/2[27] in a
very simple way. These results were already obtained by van

that in both cases they observed a pseudoasymptotic staf@pngen and Erngi28,30, who were able to find in the case
with wrong exponents but apparent scaling, and that the a®=1 the exact inequality, @<r<2-21"9(1—d)/
tual asymptotic scaling regime appeared at times too large t2—29), which shows that=2d+ O(d?) whend—0. This
be seen by their simulations. This illustrates the drawback ointeresting result will be generalized to aly in the next
considering the direct time evolution of the system: the acsection and th€©(d?) term will be computed iD=1. They
tual asymptotic regime may not be reached within the acceslso found weaker inequalities ib=1, but no result was

sible numerical simulation time scale. obtained for general andD.
Krivitsky [20] numerically solved Smoluchowski’'s equa-  In order to deal with the general case, we introduce an
tion for the time dependent distribution for the kerrh’%, extremely simple method to get lower and upper bounds for

for D=1,d=<1, for which he determined ten values fofsee 7. We rely on Eq.(2.8) valid for a>7—1. Combining Egs.
Fig. 1). Comparison with analytical results obtained by (2.7) and(2.8), we get
analysis of the scaling equatidimfinite time limit) in the

present article will assess the fact that in this case the J f“ (x,y)dxd
asymptotic regime was actually reached by Krivitsky’s solu- 0 gix.y y
tion. These numerical results will be found to be in excellent 7=2—(1-a) = . (3.2
agreement with our variational method of Sec. V. f f g(x,y)A(x/y)dxdy
0

Song and PolanfR1], computed the large time evolution

of the number of C|USter9(t)“t72’, and asz'=z(2—1)
when 7>1, andz’ =z, when 7<1, we can extractr from
their data(for which 7>1). Their method consists in solving
the equation fom(t) as a power series in timg and to
extract the exponert’ by manipulations of this series. They
treated only the cased=1D=2 andd=2D=3. In the
cased=1D=2, they present two different results in the
text. They first consideK} and find 12’ =0.57+0.01, then
they extend their method tKg_l and in the casal=2, 2—(1—a)im,<7<2—(1—a)/M,. (3.3
which is exactly the same as previously, they find

1/z'=0.588 (they do not give any error estimate in this We then choose the best values @&d/D compatible
case. In the following, we shall see that we believe the firstwith a>7—1 leading to the tightest bounds. More precisely,
result to be closer to the exact one. In the next section, wave proceed the following way: we start with=d/D (as
shall see that their result ith=2,D =3 strongly violates ex- 7<1+d/D), from which we obtain some upper and lower
act inequalities, and thus is wrong. boundr,, and 7y, . If 7yw<1+d/D, we can repeat the opera-

where  A(u)=[1+u*—(1+u)?](1+u*®)9/(u®+u?P)
satisfies  A(u)=A(1/u) and g(x,y) = (x*y9P
+x¥Py*)f(x)f(y). The ratio in Eq(3.2) can then be inter-
preted as the inverse of a kind aferageof A(x/y) with the
weightg(x,y). For a givena<d/D, we numerically deter-
mine the maximumM , and minimumm, of the function
A(u). Using Eq.(3.2), this gives
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tion with 7, —1<a<d/D which leads to new,, and 7y, , finite critical D¢(d), such thatr<<1 for anyD>D.. This
otherwise we cannot improve the trivial upper boundresult will be used in Sec. IV.

1+d/D. If the newr), is bigger thano+ 1, we must reject

this attempt, and keep the old values of both the upper and

lower bound, but if it is smaller, then we can repeat the V. PERTURBATIVE AND NONPERTURBATIVE
process and keep on this way until we obtain the tightest EXPANSIONS

bounds.

For a generaW:O kernel K(X’y), this method can be In this section we use the exactly solvable lindts 0 and
straightforwardly extended, with(u)=[1+u“—(1+u)®] D= as a basis for a perturbative expansion. We also con-
K(1,u)/(u*+ut) andg(x,y) = (x4y* +x*y) F(x) f(y). sider the cas@— oo, ke?epingd/Dzl)\ constant, for which

A superficial plot of the functiod(u) for K3 may lead to ~ We find a nonperturbative expansion. o
the incorrect conclusion that its minimum is always obtained We saw that lig_o7=0. What about th@® — o limit of
at u=0 with A(0)=1. In fact a more careful study ok 7? In fact, although _strlctly ab=c, 7 is equal to _O, as
shows that for certain values of, the actual minimum is at  (X)=2'"%€™%, we will see thatr,,=limp _..7>0. This re-
u>0 but very close to 0. For u—O0, sult was already noticed by van Dongen and Ernat #l
A(u)~1+duP—udP-e and we see that i>(d—1)/ [28]. Sincer<1+d/D we get that
D, there is a local minimum fou,,>0 with A(u,,)<1. For
d>1, and a=(d—1)/D+e&, we getu,~exd—In(d)/e], Te=1. 4.7
which vanishes exponentially whesn—0 (d>1). Indeed,
even whena is not so close tod—1)/D, u,, may be very What can we learn from Ed2.7) in the largeD limit? We

small. For instance, for d=2D=3, and see that the limit forr is
«=0.58598>(d—1)/D=03B..., we find that .
uy,=1.365<10 4, and A(u,)=0.7322, which leads to a =2—J " o pl-d 4.2
nontrivial lower bound of 1.4349 for. T =(X)dx 4.2

Actually, it is easily seen that the inequalities obtained by
van Dongen and Erngin the cased=1 or D=1) corre- provided that
spond toa=d/D. In fact, even in this casél , andm, are
nontrivial, and they used somexplicit bounds ofM, and Fo
m,,, which do not lead to the tightest bounds for lim f [fo(x)—f.(x)]x¥Pdx=0. 4.3
Thus our method consists in computing thetual value D0
of m, and M, and varyinga to optimize these bounds, ) . , )
which allows us tagreatly improvevan Dongen and Ernst's Ford<1, this result is consigt(?nt, since, from the last remark
explicit inequalities forD=1 or d=1, and to obtain new ©Of Sec. lll, we getr,,<2—2"""<1.
exact bounds fod> 1. For instance, for the physically inter- ~_However, ford=1 we know thatr=1, hencer.=1,
esting casegsee below (d=1D=2), (d=1D=4), and Which means that fod>1,
(d=2D=4) we, respectively, found 1.084r<1.147, e
1=<7=<1.075(compared to £7<1.28 and E7=<1.109 in lim J [fo(X)—f.(x)]x¥Pdx=1-21"9>0 (4.4
[28]) and 1.2557<1.5. D—oJ 0
For d=2D=3, we find 1.434% 7<1.585, which just
discards the value=1.244 found by Song and Polafi2ll], ~ while in d=1, Eq.(4.3 is true.
and strongly questions the validity of their approach. The Now that we know the larg® limit of 7 (7.=1 for
exact bounds we obtained ih=1,D =2 are violated by their d>1 and 7.,.=2—2'"9 for d<1), as well as its smalt
alternative value 1.150 for but not by their first result limit (7—0), let us compute the corresponding asymptotic
1.123(see Sec. II € corrections.
It is useful to note that for anyD, with o«=d/D,
A(u)—1/2 whend—0, which entails thatr— 0 [from Eq. A. Small d expansion
(3.3)] in this limit.
To conclude with this topic of inequalities, let us consider
Eq. (3.3 with «=d/D. In this case, whe —x,

First, consider the limid—0. We expand in series in
d: f(x)=fo(x)+df;(x)+0(d?), fo(x)=e *. A systematic
way of expandingr would be to write down a lineafself-
consistent differential equation forf; to solve it and plug

A(u)= E(l+ u= )14+ yd0 — (14 u)¥P] the result into Eq(2.7).
2 However, as far as the first order is concerned we can get
2d-1  goy<1 it without solving for f,. By expanding the integral expres-
’ sion of 7, Eq. (2.7), we get
—1{1 (3.9
E, u=0

+o0 d [+
T=2—f f(x)xd/Ddx=——f fo(x)INxdx
0 DJo

hencem,— 1/2 andM ,— 2971, Therefore the upper bound .
for 7in Eq. (3.3 tends to 2- 21~ 9. This is strictly less than _df f,(x)dx+0(d?). (4.5
1 for d<1, which means that for ang<<1, there exists a 0
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Then we expand both sides of E§.1) to get an equation for

ST (x)dx:

+ oo 1 + o
fo f1(x)dx= Ef JO fo(X) fo(y)IN(xP+y*P)dxdy
—+ oo

—f fo(x)dxfmfl(x)dx (4.6
0

0

hence [f(x)dx=—[fe *VIn(x}*P+yP)dxdy. After
eliminating [ f1(x)dx, we get

STEPHANE CUEILLE AND CLEMENT SIRE 55

r=2dJp+0(d?),

J —fll o
D= on m

Let us mention that this result can be systematically gener-
alized to the case of any homogeneous kernel of the form
[g(x,y)]Y, leading tor= ZdIéIng(l,(l— u)/u)du+0(d?).

Although it may seem a bit tedious, it is interesting to
recover this result in another way, as it shows that the small
x behavior off ; is consistent with the— 0 expansion of the
power lawx ™ "=1—2dJpInx+0O(d?). Let us write down the
linear equation foff 4,

1/D

du. 4.7

X +o0 +o0 X
xf1(x)+ 2e—XfO fi(y)eVdy= 2e—Xf0 fi(y)dy+ zLe—XfO e VIn(y*P +x*P)dy— 2e—Xf0 IN[y*P+ (x—y)*P]dy.

With u=e*f, we get the following equation:

+ oo

x(u’—u)+2foxu(y)dy=2f

0

which implies, after taking the derivative of E@L.9),

2
xu'+(1-=x)u’+u=— Blnx—ZJD

4 (e D1
+5f0 e_y_lﬁ_le_l_xlDdy-

(4.10

The solutionu of Eg. (4.10 involves two integration con-
stants, one being fixed by the fact tHatshould go to zero at
large x, the other,cy, by writing the compatibility with Eq.
(4.9), which can be done by taking the—0 limit the latter
equation. From the expression of the solutigppendix Q,
or directly from Eq.(4.10, it is easily seen thati has the
asymptotic expansion for—0:
u(x)=bglnx+0(1), (4.11)

W|th bOZCO_Z/D.

We know thatf(x)~cx™” when x—0. When d—0,
c—2, andr=dr,+0(d?), hence up to orded we expect

f(X)~274Inx (4.12
so that we interpreb, as — 27,
bo
T:—d?-i-O(dz). (4.13
The x—0 limit of Eq. (4.9 is
+o0 4 [+
b0=2f fi(x)dx— —f e XInxdx. (4.149
0 DJo

+ oo

u(y)e*ydy+4f

4.9

2
e VIn(y"P +x*P)dy—2xJp— 5(X|I’]X—X), 4.9

The integration of Eq(4.10 between 0 and-c yields

+ o 2 [ +»
—b0+f fl(x)dx=2JD——J e XInxdx.
0 DJo
(4.195

The combination of Eq94.14 and(4.19 yields by, which,
substituted into Eq(4.13, eventually leads to the same re-
sult for 7 as previously obtained through the expansion of
Eqg. (3.2) and Eq.(2.7).

For D=1, we getr=2d+0(d?), in good agreement
with direct numerical integration of Smoluchowski's equa-
tion performed by Krivitsky[20] and shown in Fig. Xsee
below). This result forD=1 also coincides up to order
O(d) with the inequalities forr that we obtained above, as
noticed in Sec. Ill. This is not the case for other values of
D.

The orderO(d?) requires the computation df,. How-
ever, in the special cad2=1 it is possible to obtain explic-
itly the O(d?) term by expanding Eq2.8) for a=d/D (see
Appendix B. We obtain

2

T
r=2d+| 5 -4 d?+0(d3). (4.16
In Sec. V (see Fig. 1 we shall see that this result is in
excellent agreement with both Krivitsky's results and a

method of approximation that we shall introduce in Sec. V.

B. Large D expansion
Now, we perform an expansion in powers ofD1for
d=<1, expanding f(x)=f..(x)+ (1/D)f(x)+ (1/D?)f,(x)
+0(1/D3).
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Perturbative expansion ind1. Ind<1, as mentioned in wherey is Euler's constant, while from Eq2.7),
Sec. lll, 7<1 for anyD above a finite criticaD(d). As a

consequence, Eq2.8) can be written for anyD>D(d). _ _Ef“” _if*“ i
Therefore we can expand this equation for labge powers ~T™"Dp 0 F=(x)In0GOdx DJo f100dx+0 D?)"
of 1/D, and we find at first order, (4.19

e _ te We conclude, using Ed4.18), that the first order correction
fo f (x)dx=d 2¢ ZJ fo fO0 () (Inx+Iny)dxdy 07 o, 9 Ed

The same method also gives access to the next term:

+ o0 + o0
+2df fm(x)dxf f1(x)dx (4.17) d2 (e , d [+
0 0 = - -
T=To 2D2fo f(X)(Inx)=dx DZJ’O f1()In(x)dx
hence
1 (+= 1
+ o0 + o0 _FJ fz(X)dX+O ﬁ) (42@
f fl(x)dx=—df f.(x)In(x)dx=2"9y, 0
0 0
(4.18  while
|
+oo 1 +o0 24
f fo(x)dx= 5] f foo(x)foc(y)g{(dnL D[ (Inx)?+ (Iny)2]+2(d—1)In(x)In(y)}dxdy
0 0
4o 4o 2 +o
+2d—1df f fl(x)fl(y)(|nx+|ny)dxdy+2d—1(f f1(x)dx +2f f(x)dx.  (4.21)
0 0 0
|
Using the known value of f; we get and eventually that = x/D + O(1/D?) wherex is the solu-
tion of the nonlinear equation:
+ d2 + oo P 2 1
_fo fz(x)dxzzf0 fo(X)(Inx)=dx - :f (1+pYd=)dgy, . (4.24
1+2 0
+ o . . . . .
This equation always has a solution consistent with the
+
dfo F1(In(x)dx exact bound ¥r<1+d/D. For instance, in the case

d=2, D=4 we obtainT~1.462. Though it is still of order
1/D, the obtained perturbative estimate depends on the
choice ofa. a=d/D seems, however, to be the most natural
choice.

In d=1, c vanishes and we do not learn much. All terms
of thed<1 series forr in powers of 1D vanish ford— 1, as
can be seen in Eq4.23 for the two leading ones. The
O(i) 4.23 reason is the following: the perturbation is derived from Eq.

D3 ' (3.1) under the assumption that<1. In d=1, such an as-

sumption yields  Zf(x)dx=2[/x"Pf(x)dx][[f(x)dxX]
Once again we were able to obtain a highly nontrivial expanhencer=1. Consequently the perturbative valueofends
sion for 7 without solving forf, andf, themselves, although 0 1 whend—1". As will be illustrated below by numerical
this can also be achieved this way. Note that in the limit offésults, for a giveri>1 the criticalD =D(d) above which
|arge D and small d, Eqs (47) and (423) coincide up to 7<1 tends to |nf|n|ty wherd— 17, entailing the VaniShing

(4.22

(v being Euler’'s constaiptwhich leads to

w227 9d(1—-d)

—_o5_ol-d
7=2-2"+ 1202

orderO(d/D?). of the perturbation validity domain iB. Thus the correction
Perturbative estimate ford 1. In the casel=1, we have 0 7=1 for largeD may benonperturbativein d=1.
shown thatr=1 and sincer<1+d/D, we see that—1 for If we now take thed—-co limit in Eq. (4.24, we obtain

D—w and finited=1. As f, is nonintegrable, Eq(2.8) 7=1+X—2"% (A=d/D), a nonperturbative behavior in
cannot be used withv=0, and the previous perturbation d which is to be related to the results below, obtained for
breaks down. d—o, D—oo, keeping\ constant.

Nevertheless we can try to obtain an estimater @i the
following way: we make the ansafz-f..+c/s'*¢e~S. We C.larged and D
plug it into Eg.(2.7) and Eq.(2.8) for a=d/D, and after We now present a nonperturbative calculation in the limit
some algebrgsee Appendix Dwe see that for consistency of large d and D, keeping the ratio.=d/D fixed. In this
e must be of order T and thatc=(1-2'"9(d/D—¢), limit, the kernel can be written
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(xP +y1Pyd=2d(xy)M 1+ 0O(d/D?)] (4.25 Eventually, we showed that for a fixed homogeneity
N=d/D, 7 tends exponentially to X\ at larged. In the
and surprisingly transforms into the well-studied “product” following section we present a general numerical method to
kernel[2,18,30,19-21,20 Assuming scalinda still contro-  computer and we confirm our analytical result by perform-
versial subject [20]), one can easily show that ing an extensive study of the functiaifd,D).
r=1+A=1+d/D [18] [see also Egg1.3) and(1.4) and the

discussion below them, as it correspondgute A/2>0]. V. VARIATIONAL APPROACH

We can show that including higher order corrections in ) . _ o
power of 1D does not change the value of so that the In this section we present a practical way of obtaining
correction tor=1+\ is certainly nonperturbative. Consider 9ood approximate values for, without explicitly solving
the expansion of the kernel: Smoluchowski’'s equation. Once again, we rely on &9),

which holds for the exact scaling functigsolution of Eq.
K(x,y)=2%xy)M[1+2790(1/d?)]. (4.26  (2.5)], for any a>7—1. This equation igjenera) and does
_ not depend on the specific kernel we study in this article. As
The rescaled functioi=29f is the solution of the scaling a consequence, the methods we develop are general and do
form of Smoluchowski's equation with the kernel apply to any homogeneous kerndlVe emphasize the fact
R’:g*dK(x,y), which is equal to Xy)*? at every order in  that this method does not intend to approach the whole scal-

1/d=1/(\D). In fact, we can estimate this correction by as-ing function, but sets the focus on the computatiorrgfn

suming that for finited and D, fact, numerically solving the scaling equati¢2.5) for the
_ scaling function seems to be very difficult, and at least as
f(s)~c, /st™ d (4.2 difficult as directly solving the time-dependent equation

[31] 1.
for s— 0. Plugging this estimate into ER.7) with the limit
kernel of Eq.(4.29, we first get A. Principles of the method
Cy The simplest way of approximating is to evaluate the

8d“27d(1_)\)- (4.28  “average” in Eq.(3.2) using a reasonable trial weight func-

tion g(x,y) instead of the unknown exact one. As a simple
¢, can be determined by matching the coefficients of thetart, we will expose a crude, but straightforward algorithm,
leading terms in Eq(2.5 using the kernel of Eq(4.25. that illustrates t.he ba5|c_|de::_1. Then we will devglop the varia-
After a straightforward calculation, one gets in tteso tional method |tse_If, which is not much more intricate, but
limit, much more effective.
A one-parameter choice for a trial weight function is ob-
c,=2(1-N\)I, %, (4.29  tained by replacing in the above expressionggk,y) the
exact f(x) by f.(x)=x""exp(—x), which has the correct
1 o N leading asymptotics for smatl (by definition of 7) and de-
= fo [u(1-u)] (u*+(1-u)*—1]du, cays exponentially at large, although not with the exact
(4.30 asymptoticsx~¥Pe~* (d/D<1) [16]. Still, this functional
form is known to be a good approximation of the actual
which leads to f(x) obtained in simulation§20], and is even the exact so-
lution, but for a multiplicative constant, in thd=D=1
r=1+N—29 1. (4.3)  case, which belongs to the special class1 [27]. The first
idea that comes to mind is just to determine self-
We thus find a nonperturbatiexponentially smallcorrec-  consistently such that E¢3.2) holds forf ., with a specific
tion to 7 in the larged and largeD limit, consistent with the  choice of e, for instancea=d/D. This is readily done, by
result obtained above fat>1 and largeD. Note that Eq. an iterative method: starting from an initia}, verifying pre-
(4.29 is also consistent with the exact result that-1 as  viously obtained exact bounds, we construct the sequence
D—o for finite d>1, a result that we obtain by setting

A=0 (asl, diverges. The1=(1—e)+e[2—(1-a)R,(f, )], (5.9
D. Summary of the results with
We have shown that whe—o, 7—1 for d=1, +oo
whereasr—2—2179<1 for d<1. We were able to derive f f x“p(x)y¥P(y)dxdy
an O(1/D?) perturbative expansion id<1, and we con- R, (¢$)=2 0

vinced ourselves that the leading corrective terrdinl was ree o a
of order 1D, by giving an estimate of this correction. In f fo PO S(YIKGY)LOxHY) =X =y
d=1 both approaches break down and the laBgeorrec- (5.2
tions to 7,,=1 are probably nonperturbative.

When d—0, 7 goes to zero, and we gave a first orderwhich converges, with a proper choice 0f%:>0, to a fixed
perturbative expression i, for anyD. ForD=1, we also point corresponding to af. verifying Eq.(3.2). The numeri-
found the explicit coefficient im?. cal evaluation ofR(7) can be achieved with utter celerity
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and arbitrary precision, since it reduces to the calculation o, peing either 25— 1—\ (if 7o>1+\— ), Of 79— u4 (if

one-dimensional integrals, and of a few values offthfenc-  7,<1+X— ;). The smallx leading term inf, is o pro-

tion, thanks to a very convenient transformatisee Appen-  vided thatr,>\. The approximate value, is the value of

dix A). We notice that it is unnecessary to include any mul-z, at the minimum.

tiplicative constant intd ,, since it would just cancel outin By construction, this method reproduces the exact results

Eq. (3.2. for the constant kernel and=1,D=1, since the exact scal-
Of course, this algorithm should yield different values of jng function is contained in those cases in the class of varia-

7 for different choices ofr, except in the special case when tional function we chose. In general, this method is inad-

the exact solution is of the fornfi,. This corresponds to equate to approachitself, and is just designed to compute

d=0,D=« andd=1D=1, and this method converges by r in the same way as the variational approach in quantum

construction, to the exact value ef but for the round-off mechanics is designed to obtain eigenvalues but, in principle,
errors. In the generic case, the variation can be nonnot eigenfunctions.

negligible (in d=2D=4, r~1.371 for a=d/D, while
7~1.398 fora=0.403) and the fixed point may even vio-
late exact bounds. For instance, in the cdsel,D=3 with
a=d/D we getr=0.9894 whereas we know that-1. The With a small numbem of variational parameters, we
variation with @« makes the method unreliable. In choose to perform the minimization with the downhill sim-
d=2D=4, it gives 7~1.385-0.015, compared to Pplex method described iB2] (steepest descent, conjugate
7~ 1.434+0.004 with the variational approximation, that we gradient, or other methods could also be used, with the draw-
now introduce, which, starting from the same basic ideaback that these methods require extra evaluationg?ofo
proves to be much more effective. compute its gradient This method starts from an
Variational approximation A much better and hardly n-dimensional simplex, i.e., n+1 points in the
more intricate method is to choose a reasonable sample #fdimensional parameter space, and performs a sequence of
values ofa, and minimize an error function measuring the geometric deformations until it contracts to a local minimum
violation of the corresponding Eq¢3.2). This method can of the function. It is not the fastest algorithm, but it easily

B. Implementation

be systematically improved by allowing forfree “fitting” converges, and in our case where the computational burden
parametersincluding 7 itself) in the trial weightg(x,y). In IS low we do not need more sophisticated devices.
the following we will proceed by replacing the exdcby a As in any optimization problem, the initial condition is a
variational function of the form crucial parameter, but here there is the additional complica-
tion that the smallest momeat,,;, used in the computation
n of x? should be bigger tham— 1, and bigger tham,—1 at

fo(X,T0r Ty + + - 1TnsCpy + - - ,Ci) =X 70 X+ 2 c;x e any step of the algorithm. What information on the value of

i=1 T we maya priori gather(exact bounds, perturbation expan-

(5.3 sion should guide our choice. Anyway, we do know that
7<<1+\: starting with an initial, smaller than ¥\ and
and we will minimize the error function, amin>\ should avoid any trouble. As we get a first approxi-
mation of r we will be able to decrease the value®y;, and
make it closer tor,— 1, while refining the initial conditions.
Xz(fv)ZEi [70-2+(1-a)R, ()1 (54 A'few Monte Carlo minimization steps can also be used to
find a proper initial conditionbut we scarcely needed this
functionality in this work.
Why should we choose as small a,,, as possible? The
fnswer is that small moments probe the smatlivergence
of f(x), which is precisely what we are interested in. How-
ever, we also need some intermediate and higher moments to
probe the intermediate and the largex decay to stabilize
consistent values af; andc,. There should be at least as
many moments as variational parameter, otherwise there
would be an infinite number of minima. Too many moments
Lin—2r would cause excessive numerical round-off errors in the
X it 7>14+A—u computation ofy?.
ooy XF1ITT O if <l N—puy (5.5 We tested round-off errors by computing for the ex-
actly solvable modeK} for which f(x)xx~%%™, since,
were we endowed with infinite humerical precision, our al-
gorithm would yield the exact result in this case, as said
before, whatever they; may be, provided that they all are
bigger than 1/2 7—1.
With the three-parameter function introduced above, and
1 c c moments 0.55, 0.6667,2 0.783, 0.98, and 2, we find
_ 1 2\ o—x 7=1.499 974X 10" =1.94x10"°), the uncertaint
fu(X.70,C1,C2) = (ﬁ+ X710 X_)‘)e 59 being due to variations()f/vith different czhoices for the ini)tlial

to get a variational approximation,= o of 7. Brute force
should not be used in the evaluation y#: once again, Eq.
(A1) makes it possible to drastically reduce the computatio
time, and to perform the evaluation gf with an excellent
precision.

Of course, the values of the exponentd jrshould not be
blindly chosen. van Dongen and Erf80] showed that the
subleading term in the smatl asymptotic expansion df is

X TInx if 7m=1+A—pq,

with K(x,y) —x*cy#1x* ~#1 whenx— o, whereas the exact
asymptotic at largex is «x *e X, Therefore a good three-
parameter class of trial functions should be
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FIG. 2. The exponent was computed by the variational method P
for various values ofl and D. We show here some isi-(solid R e A ]
lines) and isoA (dashedl (A=d/D) lines. The isad lines tend to 1.2 ¢ / 1
- 1-d ; - ; i
T=2-2 (stars on the right axjgf d<1, and to 1 ifd=1. 1_'h_e_ T 11 b K o - _ o variational E
critical D above whichr becomes smaller than 1 tends to infinity / - -~ non perturbative expansion
whend—17, entailing the breakdown of the lard® perturbative 10 / ]
expansion inD=1. Thed=1 isod line seems to tend exponen- 09 / E
tially to 1, while ford>1 the relaxation to 1 is slower. An inflec- o8 b 1
tion point appears abowt~2. The isoA lines exponentially satu- 4
07 f ]

rate to 1+\ at largeD.
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values of the parameters and the tolerance on the size of the d

simplex (the minimization algorithm stop criteripn The

round-off errors increase with the number of moments and FIG. 3. Iso curves computed by the variational methsdlid
the number of variational parameters. The error is much biglines, as a function ofd, for A=1/2 and\ =2/3. As analytically
ger on ¢; and c, we find ¢;=0.11+0.1 and establishgdr tends to 1\ at_ largeD. lee agreement is good at
c,=—0.12+0.1, instead of strictly 0. This means that the 'arged with the nonperturbative expansiddashed lines
sensitivity onc, andc, is small in the vicinity of the mini- ) ) )

mum, and this method is not the right one to determine the First, we consider the case=1. Figure 1 shows the
scaling function(a negativec, is unphysical hefg but it just ~ comparison between variational approximations rofob-

was not devised for this purpose: we just meant to computtin€d with the modus operandi we just exposed, values ex-
7, and for this quantity the accuracy is excellent. tracted by Krivitsky [20] from a numerical solution of
Smoluchowski’'s equation, and th@(d?) perturbative ex-

pansion. The agreement between the variational approxima-
tion and Krivitsky’s results is excellent, which confirms the

We used this method to determine approximationsrof effectiveness and efficiency of the method: the ratio compu-
for the kernel §*P+yP)d We compared our results to tation time(a few secondgaccuracy is impressive. Actually,
numerical values obtained far<1, D=1 by Krivitsky [20],  the variational approximation looks smoother than Kriv-
and to our perturbative and nonperturbative expansions. itsky’s curve, which has two visible accidentsmall cusps

All values were obtained from the three-parameter varianeard=1 andd=0.4, and the variational approximation is
tional functions introduced earlier in this text. We used eightfully consistent with the exad(d?) expansion at smadl to
moments, six in the interval ¢p,,0.9], plus a=2 and which it clearly tends asymptotically, whereas Krivitsky's
a=3. ay, was adjusted to be as closetp—1 as possible. result tends to remain parallel to the perturbative curve,
The computation time was from 1 to 10 seconds per run onhough close to it. Its good agreement with our infinite time
a HP workstation. Two to five runs per point were necessaryesults assesses the fact that Krivitsky’'s solution actually
to adjust the parameters. reached the scaling regime, which, as said in Sec. I, was not

We also computed a few points with a different reparti-obviousa priori. We conclude that in this regime, the varia-
tion of moments: five in the ranger—1,d/D], «=0.9, 2, tional approximation recovers and confirms the results ob-
3, as well as with only two variational parametecgs€0), tained by numerical integration of Smoluchowski’'s equation.
and with four variational parametdithe additional exponent Once the effectiveness of the method was established, we
being u;— 7 in the case whernr>1+(d—1)/D]. The ob- were able to carry out a systematic studyr6fl,D), and to
served relative variations of r, were at most of a few control its validity thanks to the analytical results obtained in
10" 3. In all cases,;r was found to be consistent with exact Secs. Ill and IV.
bounds. We show in Fig. 2 the functionr(d,D) (0.25<d=<3,

C. Numerical results
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FIG. 6. Ind=0.25, the exponents computed by the variational

FIG. 4. Ind=2, the exponents computed by the variational 5,5 6ximation are in good agreement with the perturbative large
approximation are in good agreement with the perturbative largey estimater=2— 2194 722-94(1—d)/12D2+ O(1/D3).

D estimater=1+1.849D. From data, the actual asymptotic cor-
rection seems to be closer to 1.B2/The cusp on the variational \yith a nonperturbative decay in[l/(see below Ford>1
curve cor'respor?ds to the change of behavior with the occurrence gf,o largeD decay is slower, as analytically predictéde
an inflection point for abovel=2. found a 1D perturbative correction, see belpwFor d=2

the curves qualitatively shape changes and an inflection point
d=D<8) plotted in a ¢,D) diagram. Two kinds of curves appears.
are shown. Solid lines represent some dsbnes, i.e., the Iso-\ lines exponentially saturate totI\ at largeD, as
function 7(D) for a fixed value ofd, whereas dashed lines analytically established before. Figure 3 shows the compari-
are isoA (A=d/D) lines. The reliability of the approxima- son between the variational approximation and the nonper-
tion is assessed by the comparison with analytical results. Asurbative larged expansion of Eq.(4.31) in two cases,
established in Sec. IV isd-lines tend tor=2—21"9 (stars A\ =1/2 and\ =2/3. The agreement is once again excellent at
on the right axis of Fig. Rif d<1, and to 1 ifd=1. As larged.
expected, the criticdD above whichr becomes smaller than In d=1D=2, Song and Poland[21] found
1 tends to infinity wherd— 17, entailing the breakdown of 7=1.123+0.016 (using their first result which compares
the largeD perturbative expansion iD=1. Thed=1 iso- well with our 7=1.109. Ind=2D=3, we find 7=1.528
d line seems to tend exponentially to 1, which is consistentvhich, unlike their result (1.243), is perfectly consistent with
the exact bounds 1.4349r<1.585. Ind=2,D=4, we find
7=1.434, which is in fair agreement with the perturbative
large D estimater=1.462 of Sec. IV. In fact, as shown in
Fig. 4, the perturbative estimate is indeed a good approxima-
tion of 7in d=2 for D=6, and thex1/D decay is confirmed
by the variational results. The cusp on the variational curve
is confirmed by the existence of an inflection point on
d>2 curves, as mentioned above.dr 1, a nonperturbative
exponential larg®d decay tor,,=1 is confirmed by Fig. 5.
We roughly findr—10ce™ 19,

Eventually, we show in Fig. Gfor d=0.25) that the
variational result is also in good agreement with the large
D second order perturbative expansiordit 1 (<1/D?).

As this section draws to a close, we shall say that this
variational method, although very simple, seems to be very
well adapted to the determination of the exponenas it is
fast and, at least in the case we studied in this article, very

D accurate. It made it possible to acquire quantitative knowl-
edge ofr in the whole parameter space of ﬂﬁ% kernel, the

FIG. 5. Ford=1, the exponents computed by the variational Most studied and the prototype of the notorious class Il ker-
approximation display a much faster decay to thBiro limit nels. The method is general and could help shed some light
(7.=1), than ford>1. Indeed, as shown in this figure, the decay on the whole class of kernels, thus increasing the practical
seems to be exponential B, with roughly 7—1ce *® a non-  use of Smoluchowski's approach to understand aggregation
perturbative behavior to be related to the breakdown of the larggghenomena. This point is worth an example. This is precisely
D perturbative approaches fdr=1. what is dealt with in Sec. VI.
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VI. APPLICATION IN TWO-DIMENSIONAL DECAYING VII. CONCLUSION
TURBULENCE

In this section we would like to illustrate the results ob- In this article, we tackled the notoriously difficult problem
tained in this article by presenting an original application©f nontrivial polydispersity exponents in Smoluchowski's

outside the field of massive particle aggregation, namely, th8PProach to aggregation from an original angle. We chose to
dynamics of vortices in two-dimensional decaying turbu-directly start from the scalinginfinite time limit) equation,

lence. and we did not focus on the determination of the whole
Recently, a statistical numerical model was introducedscaling function, which is the object of solving Smoluchow-
[25,26 which describes the dynamics and the merger of vorski's equation, to concentrate on itself, which actually
tices with the assumption that the typical core vorticity ~mainly depends on globétegra) equations. We think, and
and the total energ)E~fuzd2x~Eiw2Ri4 are conserved lllustrated this point on the example of a simplified model of
(R; is the radius of théth vortex throughout the merging two-dimensional turbulence, that in some cases, the only
processes. This model reproduces the main features observiggowledge ofr would still be a good step towards the un-
in direct numerical simulationsee[25,26 for detailg. For  derstanding of the phenomenon. The choices we made were
instance, after noting that a distribution of vortex radii satis-fruitful and gave birth to new analytical and numerical re-
fying P(R)~R# is equivalent to a Gaussian energy spec-sults.
trum E(k) ~ kP~ © [26], the simulation of this model was able  From an analytical viewpoint, we were able to use inte-
to reproduce the fact that starting from a Batchelor spectrungral equations to find some exact bounds fpand, in the
E(k)~k™® (8=3), the system evolves systematically to aspecific case oK%= (x"P+y*P)9, we obtained some per-
steeper spectrunE(k)~k™” with y=6—p in the range yrpative and nonperturbative expansionsrofwithout ex-

y~3~5 [26]. . plicitly computing the corresponding expansions for the
Now, one expects that the collision kernel between twq,qje scaling function.

vortices is somewhat intermediate between the ballistic hard-
disk form o~ (R;+R,) [21], and the totally uncorrelated
form o~ (R;+R,)? [where the probability of colliding is
proportional to the probability that two randomly placed vor-
tices overlap, see also below E@.1)]. Thus one can de-
scribe approximately the decay of vortices due to mergers b
means of Eq(2.5) with 1<d<2 andD =4, as two colliding
Y4 in order

From a numerical viewpoint, we devised a variational ap-
proximation scheme, that recovers by construction known
exact results, and can be used as a tool for extensive deter-
mination of r, since it is both very economical and accurate.
addition, it is likely that the scaling function obtained in

he variational approach is in many cases qualitatively, if not
vortices merge into a new one wiRv=(R‘1‘+ RS quantitatively, right. Tp illustrate its effegtiveness, we per-
to conserve energy and core vorticity. One thus expects fprmed a comprehensive study ogfor a ,W"_je range of the
power law radius distribution P(R)~R%, with parameters d,D) of the kernelKy. This is a noticeable

B=D(7—1)+1 andr given by our model. We find values advance, since very little quantitative knowledge was avail-
of y ranging fromy~3.26 for d=2 (taking r=1.434) to  able for this kernel, although it was the prototype kernel with
y~4.95 (taking 7=1.012) ford=1, in good qualitative @ nontrivial 7, and the object of much attention in the past
agreement with observed exponents. As also found in diredd 7—24,27-29

simulations, the actual exponetgnd here the value of the

effective correctl) could depend on the actual initial condi-

tions (w, area occupied by the vortices enstrophy. Note ACKNOWLEDGMENTS

that the Batchelor limit case=3 is obtained when taking

the naive strict upper bound=1+d/D with d=2 and We are very grateful to Jane Lion Basson, Frasc
D=4. Leyvraz, and Sid Redner for valuable comments.

APPENDIX A: A USEFUL FORMULA

+ o
f f X~y 2e YK Y)[(XHY) =Xy ldxdy=T(2+ N+ a— 71— ) [ X711, @, 71+ ) + M 72,0, 71+ 72) ],
0
(A1)

wherel is the gamma function, and +oo
I'(x)= f t*~le dt. (A3)
0

IK(LU)[(1+Uu)*—1—u]
X(t’a'q):fo ut(1+u)2+)\+a—q

du. (A2
From a numerical viewpoint this formula makes it pos-
sible to implement very rapid and accurate code for the
To demonstrate this formula is straightforward: just makevariational approximations we developed before. It would be
the change of variable=uv,y=v, and use the definition of very awkward and inefficient to use two-dimensional nu-
theT function: merical integrationespecially here, as the integrand is sin-



55 NONTRIVIAL POLYDISPERSITY EXPONENTS IN ...

gular at the origin A startlingly economical way of comput-

ing theI” function is due to Lanczos and is described32]

(it is not much slower than the built-in exponential funcdion

APPENDIX B: THE 0O(d? TERMIN D=1

We derive theO(d?) correction tor=2d for D=1, by
computing thed? order of, respectively, Eq$2.7) and (2.8)
with #=d, to get

5477

2
xu"+(1-x)u’ +u=— Blnx—ZJD

4 [+ YUD—1
+5 o e_ymdy' (C1

With v(x) =u(x)/(x—1), this equation reduces to a first or-
der differential equation foo’, and we find

+ + oo
_ 2
4—2&12—C+4J’0 fl(x)lnxdx+4fo fo(x)dx, fl(x)zcouo(x)e’“rcl(x—1)—2JD—5(1+Inx)
(B1) . ,
x et vi
1+ +o0 o ax - 1D-1,-y
—azzzfo e*X(Inx)zderj0 f1(x)Inxdx *p°e fodylyl(yl—l)zfo dyzyz~ e
+ +o0 e Y3
+f0 f(x)dx, (B2) X(yz—l)fo d)@w (C2
where r=2d+ a,d?+ O(d®), and and
+ o0 + o
=4 Rl 2d +4ff X YIn(x+ x e
¢ fo & "Lin() T dx o & Inety) uo(x):eX—(x—l)Pf S 3

(“P” means “principal value”).

In fact, the triple integral can be transformed into a simple
integral involving special functions. For our purpose, we
only need to know that this integral goes to zero when
x—0, which is easily seen.

Jomfl(x)dx)(fowe‘ylnydy)

(B3)

|Xydd 4
Xnmxy-l—

+o0 2
f fl(x)dx) .
0

¢ can be computed sincgf; is known from the first order
calculation. After some elementary transformations, we find
thatc— 4/ e *(Inx)’dx=27%/3— 4. Combining Eqs(B1) and

(B2), we find 4+ 2a,=c—4fe *(Inx)?dx, hence eventually
2 For d>1, r=1+¢(D) where e—0 whenD—w. We
_Tm make the ansatz
=73 —4. (B4)

+

APPENDIX D: PERTURBATIVE ESTIMATE

f(X)~=f.(X)+ %e—x (D1)

APPENDIX C: THE LINEARIZED SCALING FUNCTION

We find the solution of the second order differential equa-and plug it into Eq. (2.7 to obtain 1-g=2"¢
tion (4.10 for the linear coefficientf,(x) in the smalld +cl'(d/ID—¢), which means that, whenD—oo,
expansion of the scaling function. With(x) =e*f,(x), the  c~(1—2"9)(d/D—¢). Then we make use of Eq$Al)
latter equation is and(2.8) to obtain

d
2( 1- 5) (1—s)=22—2df f e X Y(xYP 4 yP) I XD+ y¥P — (x+y)¥Pldxdy+ 2% %l (1+2d/D —&)[ X(0d/D,1+¢)

+X(1+¢,d/D,1+¢)]+2c’T(2d/D—2¢) X(1+¢,d/D, 2+ 2¢). (D2)
|
The next step is to write down the limit of this equation We obtain
whenD—c. We know thatl’(x) ~,_,¢1/x, and a change of .
i —d/D—¢ ; ;
variablev=u in the integral factorst shows that 22227d+227dd/D 8J (1+pMd=0)dg,
—eJo
X(1+¢,d/D,1+€)~X(1+¢,d/D,2+¢) )
C 1
N(d/D_8)7lfé(1+v1/(dea))ddv. +(d/D—_8)2f0(l+Ul/(d7K))ddv_ (D3)
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« is the limit of De. Taking into account the value af we
finally get

2 ! 1/(d d
T3 ord =f0(1+u @79 9dv=J(x,d),  (D4)

STEPHANE CUEILLE AND CLEMENT SIRE

T:1+%+o (D5)

1
52 .
Equation(D4) has a unique solution©«x<d since the inte-

gral J(k,d) is a decreasing function ofx, and
J(0,d)=29>2/(21 "9+ 1)>1=J(d,d) (for d>1).
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